CSE 312

Foundations of Computing II

Lecture 4: Intro to discrete probability

slido.com/2402743 for polls and anonymous questions

Probability

- We want to model uncertainty.
 - i.e., outcome not determined a-priori
 - E.g. throwing dice, flipping a coin...
 - We want to numerically measure likelihood of outcomes = probability.
 - We want to make complex statements about these likelihoods.
- We will not argue <u>why</u> a certain physical process realizes the probabilistic model we study
 - Why is the outcome of the coin flip really "random"?
- First part of class: "Discrete" probability theory
 - Experiment with finite / discrete set of outcomes.
 - Will explore countably infinite and continuous outcomes later

Agenda

- Events
- Probability
- Equally Likely Outcomes
- Probability Axioms and Beyond Equally Likely Outcomes
- More Examples

Sample Space

Omega

Definition. A **sample space** Ω is the set of all possible outcomes of an experiment.

Examples:

- Single coin flip: $\Omega = \{H, T\}$
- Two coin flips: $\Omega = \{HH, HT, TH, TT\}$
- Roll of a die: $\Omega = \{1, 2, 3, 4, 5, 6\}$

Events

Definition. An **event** $E \subseteq \Omega$ is a subset of possible outcomes.

Examples:

- Getting at least one head in two coin flips: $E = \{HH, HT, TH\}$
- Rolling an even number on a die : $E = \{2, 4, 6\}$

Events

Definition. An **event** $E \subseteq \Omega$ is a subset of possible outcomes.

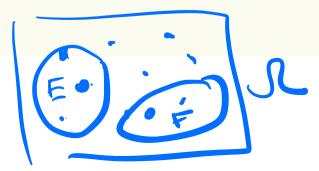
Examples:

- Getting at least one head in two coin flips: $E = \{HH, HT, TH\}$
- Rolling an even number on a die : $E = \{2, 4, 6\}$

Definition. Events E and F are mutually exclusive if $E \cap F = \emptyset$ (i.e., can't happen at same time)

Examples:

• For dice rolls: If $E = \{2, 4, 6\}$ and $F = \{1, 5\}$, then $E \cap F = \emptyset$



Example: 4-sided Dice

Suppose I roll two 4-sided dice Let D1 be the value of the blue die and D2 be the value of the red die. To the right is the sample space (possible outcomes).

Die 1 (D1)

What outcomes match these events?

A.
$$D1 = 1$$

B.
$$D1 + D2 = 6$$

C.
$$D1 = 2 * D2$$

Die 2 (D2)

	1	2	3	4
-1	(1, 1)	(1, 2)	(1, 3)	(1, 4)
2	(2, 1)	(2, 2)	(2, 3)	(2, 4)
3	(3, 1)	(3, 2)	(3, 3)	(3, 4)
4	(4, 1)	(4, 2)	(4, 3)	(4, 4)

Example: 4-sided Dice

Suppose I roll two 4-sided dice Let D1 be the value of the blue die and D2 be the value of the red die. To the right is the sample space (possible outcomes).

Die 1 (D1)

What outcomes match these events?

A. D1 = 1 $A = \{(1,1), (1,2), (1,3), (1,4)\}$

B. D1 + D2 = 6 $B = \{(2,4), (3,3), (4,2)\}$

C. D1 = 2 * D2

 $C = \{(2,1), (4,2)\}$

Die 2 (D2)

	1	2	3	4
1	(1, 1)	(1, 2)	(1, 3)	(1, 4)
2	(2, 1)	(2, 2)	(2, 3)	(2, 4)
3	(3, 1)	(3, 2)	(3, 3)	(3, 4)
4	(4, 1)	(4, 2)	(4, 3)	(4, 4)

Example: 4-sided Dice, Mutual Exclusivity

Are *A* and *B* mutually exclusive? How about *B* and *C*?

A.
$$D1 = 1$$

B.
$$D1 + D2 = 6$$

C.
$$D1 = 2 * D2$$

Die 2 (D2)

		1	2	3	4
Die 1 (D1)	1	(1, 1)	(1, 2)	(1, 3)	(1, 4)
	2	(2, 1)	(2, 2)	(2, 3)	(2, 4)
	3	(3, 1)	(3, 2)	(3, 3)	(3, 4)
	4	(4, 1)	(4, 2)	(4, 3)	(4, 4)

Agenda

- Events
- Probability
- Equally Likely Outcomes
- Probability Axioms and Beyond Equally Likely Outcomes
- More Examples

Idea: Probability

A **probability** is a number (between 0 and 1) describing how likely a particular outcome will happen.

Will define a function

$$\mathbb{P}:\ \Omega\to[0,1]$$

that maps outcomes $\omega \in \Omega$ to probabilities.

– Also use notation:
$$\mathbb{P}(\omega) = P(\omega) = \Pr(\omega)$$

Example – Coin Tossing

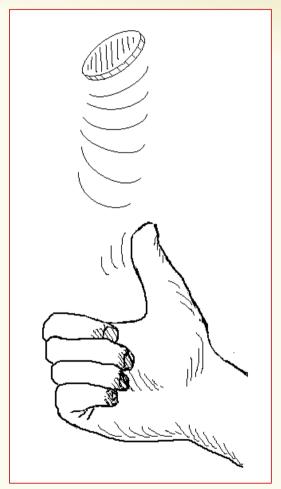
Imagine we toss <u>one</u> coin – outcome can be **heads** or **tails**.

$$\Omega = \{H, T\}$$

P? Depends! What do we want to model?!

Fair coin toss

$$\mathbb{P}(H) = \mathbb{P}(T) = \frac{1}{2} = 0.5$$



Example – Coin Tossing

Imagine we toss <u>one</u> coin – outcome can be **heads** or **tails**.

$$\Omega = \{H, T\}$$

P? Depends! What do we want to model?!

Bent coin toss (e.g., biased or unfair coin)

$$P(H) = 0.45, \qquad P(T) = 0.55$$

Probability space

Definition. A (discrete) **probability space** is a pair (Ω, \mathbb{P}) where:

- Ω is a set called the **sample space**.
- P is the probability measure,

a function $\mathbb{P}: \Omega \to [0,1]$ such that:

- $-\mathbb{P}(\omega) \geq 0$ for all $\omega \in \Omega$
- $-\sum_{\omega\in\Omega}\mathbb{P}(\omega)=1$

Probability space

Either finite or infinite countable (e.g., integers)

Definition. A (discrete) probability space is a pair (Ω, \mathbb{P}) where:

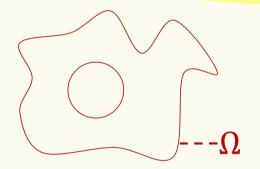
- Ω is a set called the **sample space**.
- \mathbb{P} is the **probability measure**, a function $\mathbb{P}: \Omega \to [0,1]$ such that:
 - $-\mathbb{P}(\omega) \geq 0$ for all $\omega \in \Omega$

$$-\sum_{\omega\in\Omega}\mathbb{P}(\omega)=1$$

Some outcome must show up

The likelihood (or probability) of each outcome is non-negative.

Set of possible elementary outcomes



Specify Likelihood (or probability) of each **elementary outcome**

Uniform Probability Space

Definition. A uniform probability space is a pair

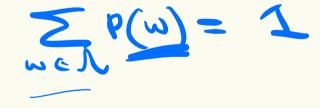
 (Ω, \mathbb{P}) such that

$$\mathbb{P}(\omega) = \frac{1}{|\Omega|}$$

for all $\omega \in \Omega$.

Examples:

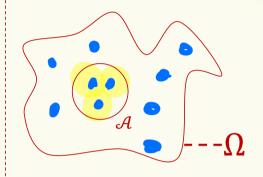
- Fair coin $P(\omega) = \frac{1}{2}$
- Fair 6-sided die $P(\omega) = \frac{1}{6}$



Events

Definition. An **event** in a probability space (Ω, \mathbb{P}) is a subset $\mathcal{A} \subseteq \Omega$. Its probability is

$$\mathbb{P}(\mathcal{A}) = \sum_{\omega \in \mathcal{A}} \mathbb{P}(\omega)$$



Convenient abuse of notation: \mathbb{P} is extended to be defined over sets. $\mathbb{P}(\omega) = \mathbb{P}(\{\omega\})$

Agenda

- Events
- Probability
- Equally Likely Outcomes
- Probability Axioms and Beyond Equally Likely Outcomes
- More Examples

Example: 4-sided Dice, Event Probability

Think back to 4-sided die. Suppose each outcome is equally likely. What is the probability of event B? Pr(B) = ???

B. D1 + D2 = 6
$$B = \{(2,4), (3,3)(4,2)\}$$

$$B = \{(2,4), (3,3)(4,2)\}$$

Die 2 (D2)

$$Pr(B) = \sum_{w \in B} Pr(w)$$

= $P(A,4) + P(3,3) + P(4,2)$ Die 1 (D1)
= $\frac{3}{16}$

	1	2	3	4
1	(1, 1)	(1, 2)	(1, 3)	(1, 4)
2	(2, 1)	(2, 2)	(2, 3)	(2, 4)
3	(3, 1)	(3, 2)	(3, 3)	(3, 4)
4	(4, 1)	(4, 2)	(4, 3)	(4, 4)

20

Equally Likely Outcomes

If (Ω, P) is a **uniform** probability space, then for any event

$$E \subseteq \Omega$$
, then

$$P(E) = \frac{|E|}{|\Omega|}$$

This follows from the definitions of the prob. of an event and uniform probability spaces.

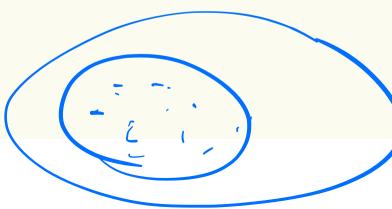
1 = { seguence of 100 countrys} = { H,T3" | 100 | P(w)=

Example – Coin Tossing

Toss a coin 100 times. Each outcome is equally likely. What is the probability of seeing 50 heads?

- (A) $\frac{1}{2}$

- D) Not sure



slido.com/2402743

Brain Break

Agenda

- Events
- Probability
- Equally Likely Outcomes
- Probability Axioms and Beyond Equally Likely Outcomes
- More Examples

Axioms of Probability

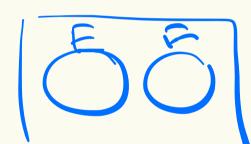
Let Ω denote the sample space and $E, F \subseteq \Omega$ be events. Note this is applies to **any** probability space (not just uniform)

Axiom 1 (Non-negativity): $P(E) \ge 0$.

Axiom 2 (Normalization): $P(\Omega) = 1$

Axiom 3 (Countable Additivity): If E and F are mutually exclusive,

then $P(E \cup F) = P(E) + P(F)$



Corollary 1 (Complementation): $P(E^c) = 1 - P(E)$.

Corollary 2 (Monotonicity): If $E \subseteq F$, $P(E) \leq P(F)$

Corollary 3 (Inclusion-Exclusion): $P(E \cup F) = P(E) + P(F) - P(E \cap F)$

25

Review Probability space

Either finite or infinite countable (e.g., integers)

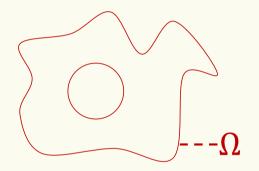
Definition. A (discrete) **probability space** is a pair (Ω, \mathbb{P}) where:

- Ω is a set called the **sample space**.
- \mathbb{P} is the **probability measure**, a function $\mathbb{P}: \Omega \to [0,1]$ such that:
 - $-\mathbb{P}(\omega) \geq 0$ for all $\omega \in \Omega$
 - $-\sum_{\omega\in\Omega}\mathbb{P}(\omega)=1$

Some outcome must show up

The likelihood (or probability) of each outcome is non-negative.

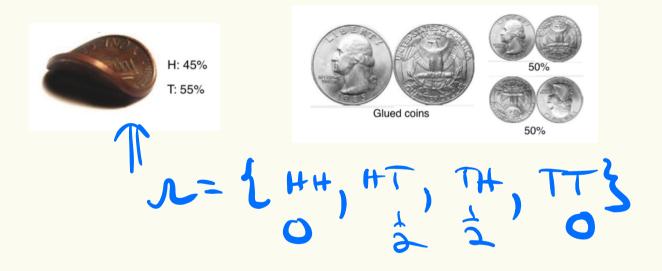
Set of possible **elementary outcomes**



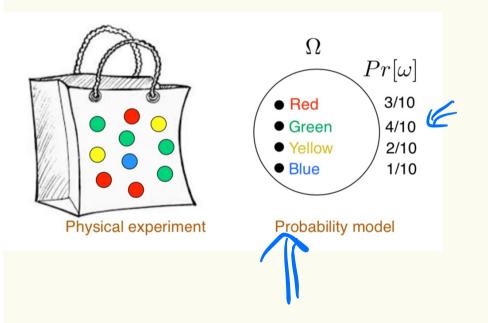
Specify Likelihood (or probability) of each **elementary outcome**

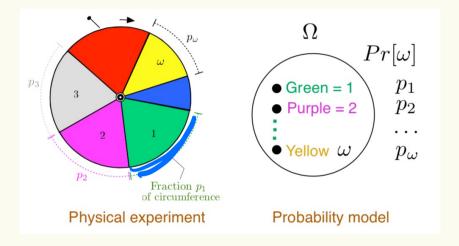
Non-equally Likely Outcomes

Probability spaces can have non-equally likely outcomes.



More Examples of Non-equally Likely Outcomes





Agenda

- Events
- Probability
- Equally Likely Outcomes
- Probability Axioms and Beyond Equally Likely Outcomes
- More Examples

Example: Dice Rolls

Suppose I had a two, fair, 6-sided dice that we roll, one green, one red. What is the probability that we see at least one 3 in the two rolls.

$$|\mathcal{N}| = 36$$
 $E = \{at | ast one 3\}$
 $P(E) = 1 - P(E^c)$
 $P(su = 3's) = \frac{35}{36}$

Example: Birthday "Paradox"

Suppose we have a collection of n people in a room. What is the probability that at least 2 people share a birthday? Assume that there are exactly 365 possible

birthdays, and each possibility is equally likely.

$$|JL| = 365^{\circ}$$
 $Pr(w) = \frac{1}{365^{\circ}}$

31

Example: Birthday "Paradox" cont.

$$R(E') = \frac{|E'|}{|\mathcal{U}|} = \frac{365 \cdot 364 \cdot 363 \cdots 365 - (n-1)}{365^n}$$

$$R = 23 \quad P(E) > 0.5 \quad Pr(at (ast on d n paper))$$

$$R = 23 \quad P(E) > 0.5 \quad Pr(none tani)$$

$$R = 23 \quad P(E) > 0.99.$$

Example: Returning Homeworks

Class with n students, randomly hand back homeworks.
 All permutations equally likely.

sheets	123
	Outcomes
·	1, 2, 3
	1, 3, 2
•	2, 1, 3
•	2, 3, 1
•	3, 1, 2
	3, 2, 1

$$\frac{17}{\sqrt{17}} = \frac{1}{\sqrt{17}}$$