CSE 312
 Foundations of Computing II

Lecture 5: Conditional Probability and Bayes Theorem

slido.com/2402743
for polls and anonymous questions

Review Probability

Definition. A sample space Ω is the set of all possible outcomes of an experiment.

Definition. An event $E \subseteq \Omega$ is a subset of possible outcomes.

Examples:

- Single coin flip: $\Omega=\{H, T\}$
- Two coin flips: $\Omega=\{H H, H T, T H, T T\}$
- Roll of a die: $\Omega=\{1,2,3,4,5,6\}$

Examples:

- Getting at least one head in two coin flips:
$E=\{H H, H T, T H\}$
- Rolling an even number on a die :

$$
E=\{2,4,6\}
$$

Probability space

Either finite or infinite countable (e.g., integers)

Definition. A (discrete) probability space is a pair (Ω, \mathbb{P}) where:

- Ω is a set called the sample space.
- \mathbb{P} is the probability measure, a function $\mathbb{P}: \Omega \rightarrow[0,1]$ such that:
$-\mathbb{P}(E) \geq 0$ for all $E \subseteq \Omega$.
$-\sum_{\omega \in \Omega} \mathbb{P}(\omega)=1$

| Some outcome must show |
| :--- | :--- |
| up | | The likelihood (or |
| :--- |
| probability) of each |
| outcome is non-negative. |

Set of possible elementary outcomes

Specifies Likelihood (or probability) of each event in the sample space

Review Axioms of Probability

Let Ω denote the sample space and $E, F \subseteq \Omega$ be events.

Axiom 1 (Non-negativity): $P(E) \geq 0$
Axiom 2 (Normalization): $P(\Omega)=1$
Axiom 3 (Countable Additivity): If E and F are mutually exclusive events, then $P(E \cup F)=P(E)+P(F)$

Corollary 1 (Complementation): $P\left(E^{c}\right)=1-P(E)$
Corollary 2 (Monotonicity): If $E \subseteq F, P(E) \leq P(F)$
Corollary 3 (Inclusion-Exclusion): $P(E \cup F)=P(E)+P(F)-P(E \cap F)$

Review Equally Likely Outcomes

If (Ω, P) is a uniform probability space, then for any event $E \subseteq \Omega$, then

$$
P(E)=\frac{|E|}{|\Omega|}
$$

Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- Bayes Theorem + Law of Total Probability
- More Examples

Conditional Probability (Idea)

What's the probability that a uniformly random person likes ice cream given they like donuts?

Conditional Probability

Definition. The conditional probability of event A given an event B happened (assuming $P(B) \neq 0$) is

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

An equivalent and useful formula is

$$
P(A \cap B)=P(A \mid B) P(B)
$$

Reversing Conditional Probability

Question: Does $P(A \mid B)=P(B \mid A)$?

No! The following analogy is purely for intuition and makes no sense in terms of probability

- Let A be the event you are wet
- Let B be the event you are swimming

$$
\begin{aligned}
& P(A \mid B)=1 \\
& P(B \mid A) \neq 1
\end{aligned}
$$

Example with Conditional Probability

Toss a red die and a blue die (both 6 sided and all outcomes equally likely). What is $P(B)$? What is
$P(B \mid A)$?

Conditional Probability in a uniform probability space

Definition. The conditional probability of event A given an event B happened (assuming $P(B) \neq 0$) is

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

If the probability space is uniform, then $\quad P(A \mid B)=\frac{|A \cap B|}{|B|}$

Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- Bayes Theorem + Law of Total Probability
- More Examples

Our First Machine Learning Task: Spam Filtering

Subject: "FREE \$\$\$ CLICK HERE"

Suppose you know that 80% of emails you receive are spam.

So a priori, our belief is that any email has an 80% chance of being spam.

How do you update that belief when you see that the subject line contains the phrase "FREE \$\$\$"?

Bayes Theorem

A formula to let us "reverse" the conditional.

Theorem. (Bayes Rule) For events A and B , where $P(A), P(B)>0$,

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

$P(A)$ is called the prior (our belief without knowing anything) $P(A \mid B)$ is called the posterior (our belief after learning B)

Bayes Theorem follows from the definition of conditional probability

Definition. The conditional probability of event A given an event B happened (assuming $P(B) \neq 0$) is

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Bayes Theorem Proof

By definition of conditional probability

$$
P(A \cap B)=P(A \mid B) P(B)
$$

Swapping A, B gives

$$
P(B \cap A)=P(B \mid A) P(A)
$$

But $P(A \cap B)=P(B \cap A)$, so

$$
P(A \mid B) P(B)=P(B \mid A) P(A)
$$

Dividing both sides by $P(B)$ gives

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Our First Machine Learning Task: Spam Filtering

Subject: "FREE \$\$\$ CLICK HERE"

What is the probability this email is spam, given the subject contains "FREE"? Some useful stats:

- 10% of ham (i.e., not spam) emails contain the word "FREE" in the subject.
- 70% of spam emails contain the word "FREE" in the subject.
- 80% of emails you receive are spam.

Brain Break

Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- Bayes Theorem + Law of Total Probability
- More Examples

Partitions (Idea)

These events partition the sample space

1. They "cover" the whole space
2. They don't overlap

Partition

Definition. Non-empty events $E_{1}, E_{2}, \ldots, E_{n}$ partition the sample space Ω if (Exhaustive)

$$
E_{1} \cup E_{2} \cup \cdots \cup E_{n}=\bigcup_{i=1}^{n} E_{i}=\Omega
$$

(Pairwise Mutually Exclusive)

$$
\forall_{i} \forall_{i \neq j} E_{i} \cap E_{j}=\varnothing
$$

Law of Total Probability (Idea)

If we know $E_{1}, E_{2}, \ldots, E_{n}$ partition Ω, how does that help us compute $P(F)$?

Law of Total Probability (LTP)

Definition. If events $E_{1}, E_{2}, \ldots, E_{n}$ partition the sample space Ω, then for any event F

$$
P(F)=P\left(F \cap E_{1}\right)+\ldots+P\left(F \cap E_{n}\right)=\sum_{i=1}^{n} P\left(F \cap E_{i}\right)
$$

Using the definition of conditional probability $P(F \cap E)=P(F \mid E) P(E)$ We can get the alternate form of this that show

$$
P(F)=\sum_{i=1}^{n} P\left(F \mid E_{i}\right) P\left(E_{i}\right)
$$

An Example

Alice has two pockets:

- Left pocket: Two red balls, two green balls
- Right pocket: One red ball, two green balls.

Alice picks a random ball from a random pocket. [Both pockets equally likely, each ball equally likely.]

What is $\mathbb{P}(\mathbb{R})$?

Sequential Process - Non-Uniform Case

- Left pocket: Two red, two green
- Right pocket: One red, two green.
- Alice picks a random ball from a random pocket

Sequential Process - Non-Uniform Case

Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- Bayes Theorem + Law of Total Probability
- More Examples

Our First Machine Learning Task: Spam Filtering

Subject: "FREE \$\$\$ CLICK HERE"

What is the probability this email is spam, given the subject contains "FREE"? Some useful stats:

- 10% of ham (i.e., not spam) emails contain the word "FREE" in the subject.
- 70% of spam emails contain the word "FREE" in the subject.
- 80% of emails you receive are spam.

Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let $E_{1}, E_{2}, \ldots, E_{n}$ be a partition of the sample space, and F and event. Then,

$$
P\left(E_{1} \mid F\right)=\frac{P\left(F \mid E_{1}\right) P\left(E_{1}\right)}{P(F)}=\frac{P\left(F \mid E_{1}\right) P\left(E_{1}\right)}{\sum_{i=1}^{n} P\left(F \mid E_{i}\right) P\left(E_{i}\right)}
$$

Simple Partition: In particular, if E is an event with non-zero probability, then

$$
P(E \mid F)=\frac{P(F \mid E) P(E)}{P(F \mid E) P(E)+P\left(F \mid E^{C}\right) P\left(E^{C}\right)}
$$

Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- Bayes Theorem + Law of Total Probability
- More Examples

Example - Zika Testing

A disease caused by Zika virus that's spread through mosquito bites.

Usually no or mild symptoms (rash); sometimes severe symptoms (paralysis).

During pregnancy: may cause birth defects.

Suppose you took a Zika test, and it returns "positive", what is the likelihood that you actually have the disease?

- Tests for diseases are rarely 100% accurate.

Example - Zika Testing

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive")
- However, the test yields a "false positive" 1% of the time
- 0.5% of the US population has Zika.

What is the probability a random person has Zika (event Z) given that they test positive (event T).

Example - Zika Testing

Have zika blue, don’t pink
Suppose we know the following Zika stats

- 0.5% of the US population has Zika.
- A test is 98% effective at detecting Zika ("true positive") 100%
- However, the test may yield a "false positive" 1% of the time $10 / 995$ = approximately 1%

What is the probability a random person has Zika (event Z) if they test positive (event T)?

Suppose we had 1000 people:

- 5 have Zika and test positive
- 985 do not have Zika and test negative
- 10 do not have Zika and test positive

$$
\frac{5}{5+10}=\frac{1}{3} \approx 0.33
$$

Philosophy - Updating Beliefs

While it's not 98\% that you have the disease, your beliefs changed drastically

Z = you have Zika
T = you test positive for Zika

Prior: $\mathrm{P}(\mathrm{Z})$

Posterior: $\mathrm{P}(\mathrm{Z} \mid \mathrm{T})$

Example - Zika Testing

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive")
- However, the test may yield a "false positive" 1% of the time
- 0.5% of the US population has Zika.
$P(T \mid Z)=0.98$
Z = you have Zika
T = you test positive for Ziki
$\mathrm{P}\left(\mathrm{T} \mid \mathrm{Z}^{\mathrm{C}}\right)=0.01$
$P(Z)=0.005$

What is the probability you test negative (event \bar{T}) if you have Zika (event Z)?

Conditional Probability Defines a Probability Space

The probability conditioned on A follows the same properties as (unconditional) probability.

Example. $\mathbb{P}\left(\mathcal{B}^{c} \mid \mathcal{A}\right)=1-\mathbb{P}(\mathcal{B} \mid \mathcal{A})$

Gambler's fallacy

Assume we toss 51 fair coins. Each outcome equally likely. Assume we have seen $\mathbf{5 0}$ coins, and they are all "tails". What are the odds the $\mathbf{5 1}^{1 \text { st }}$ coin is "heads"?
$\mathcal{A}=$ first 50 coins are "tails"
$B=$ first 50 coins are "tails", $51^{\text {st }}$ coin is "heads"
$\mathbb{P}(\mathcal{B} \mid \mathcal{A})=$

Gambler's fallacy

Assume we toss 51 fair coins.
Assume we have seen $\mathbf{5 0}$ coins, and they are all "tails".
What are the odds the $\mathbf{5 1}^{\text {st }}$ coin is "heads"?
$\mathcal{A}=$ first 50 coins are "tails"
$B=$ first 50 coins are "tails", $51^{\text {st }}$ coin is "heads"
$51^{\text {st }}$ coin is independent of
$\mathbb{P}(\mathcal{B} \mid \mathcal{A})=\frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})}=\frac{1 / 2^{51}}{2 / 2^{51}}=\frac{1}{2} \quad$ outcomes of first 50 tosses!
Gambler's fallacy = Feels like it's time for " heads"!?

Summary

- Conditional Probability

$$
\mathbb{P}(\mathcal{B} \mid \mathcal{A})=\frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})}
$$

- Bayes Theorem $\quad \mathbb{P}(A \mid B)=\frac{\mathbb{P}(B \mid A) \mathbb{P}(A)}{\mathbb{P}(B)}$
- Law of Total probability .
$\mathbb{P}(F)=\sum_{i=1}^{n} \mathbb{P}\left(F \mid E_{i}\right) \mathbb{P}\left(E_{i}\right) \quad E_{i}$ partition Ω

