CSE 312
 Foundations of Computing II

Lecture 6: Chain Rule and Independence

w
PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING
slido.com/4171468
for polls and anonymous questions

Thank you for your feedback!!!

- Several people mentioned that I was going too fast.
- Slow me down! Ask questions!!! That's your job!!
- Watch Summer 2020 videos before class (at half speed)
- Do the reading before class.
- If you want more practice
- Do all the section problems!
- Problems in all three readings.
- MIT "Mathematics for Computer Science" 6.042J (sections on counting \& probability)
- Get the book "A First Course in Probability" by Sheldon Ross

Agenda

- Recap
- Chain Rule
- Independence
- Conditional independence
- Infinite process

Review Conditional \& Total Probabilities

- Conditional Probability

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

- Bayes Theorem

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)} \quad \text { if } P(A) \neq 0, P(B) \neq 0
$$

- Law of Total Probability

$$
E_{1}, \underline{, \ldots, E_{n}} \text { partition } \Omega
$$

$$
P(F)=\sum_{i=1}^{n} P\left(F \cap E_{i}\right)=\sum_{i=1}^{n} P\left(F \mid E_{i}\right) P\left(E_{i}\right)
$$

Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let $E_{1}, E_{2}, \ldots, E_{n}$ be a partition of the sample space, and F and event. Then,

$$
P\left(E_{1} \mid F\right)=\frac{P\left(F \mid E_{1}\right) P\left(E_{1}\right)}{P(F)} \neq \frac{P\left(F \mid E_{1}\right) P\left(E_{1}\right)}{\sum_{i=1}^{n} P\left(F \mid E_{i}\right) P\left(E_{i}\right)}
$$

Simple Partition: In particular, if E is an event with non-zero probability, then

$$
P(E \mid F)=\frac{P(F \mid E) P(E)}{P(F \mid E) P(E)+P\left(F \mid E^{C}\right) P\left(E^{C}\right)}
$$

Example - Zika Testing

A disease caused by Zika virus that's spread through mosquito bites.

Usually no or mild symptoms (rash); sometimes severe symptoms (paralysis).

During pregnancy: may cause birth defects.

Suppose you took a Zika test, and it returns "positive", what is the likelihood that you actually have the disease?

- Tests for diseases are rarely 100% accurate.

Example - Zika Testing

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive")
- However, the test may yield a "false positive" 1% of the time $\overline{P\left(T \mid Z^{c}\right)}=0.01$
- 0.5% of the US population has Zika. $(P(Z)=0.005$

What is the probability you have Zika (event Z) given that you test positive (event T)?

$$
\text { By Bayes Rule, } P(Z \mid T)=\frac{P(T \mid Z) P(Z)}{P(T)}=\frac{0.98 \cdot 0.005}{P(T) P} \geqslant 0.33
$$

By the Law of Total Probability, $P(T)=P(T \mid Z) P(Z)+P\left(T \mid Z^{c}\right) P\left(Z^{c}\right)$

Philosophy - Updating Beliefs

While it's not 98% that you have the disease, your beliefs changed significantly

Z = you have Zika
T = you test positive for Zika

Prior: $P(Z)$

Posterior: $\mathrm{P}(\mathrm{Z} \mid \mathrm{T})$

$P(\pi \mid 2)=1$

Example - Zika Testing

Have zika blue, don't pink
What is the probability you have Zika (event Z) given that you test positive (event T).

$$
\begin{aligned}
& P(T \mid Z)=1 \\
& P\left(T \mid Z^{c}\right)=\frac{10}{995}=0.01 \\
& P(Z)=\frac{5}{1000}=0.005
\end{aligned}
$$

Suppose we had 1000 people:

- 5 have Zika and all test positive
- 985 do not have Zika and test negative
- 10 do not have Zika and test positive

Example - Zika Testing

Have zika blue, don't pink
Picture below gives us the following Zika stats

- A test is 100% effective at detecting Zika ("true positive"). $\quad P(T \mid Z)=5 / 5=1$
- However, the test may yield a "false positive" 1% of the time $\quad P\left(T \mid Z^{C}\right)=10 / 995$
- 0.5% of the US population has Zika.

$$
P(Z)=\frac{5}{1000}=0.005
$$

What is the probability you have Zika (event Z) given that you test positive (event T)?

Suppose we had 1000 people:

- 5 have Zika and all test positive
- 985 do not have Zika and test negative
- 10 do not have Zika and test positive

Example - Zika Testing

Have zika blue, don't pink
Picture below gives us the following Zika stats

- A test is 100% effective at detecting Zika ("true positive"). $\quad P(T \mid Z)=5 / 5=1$
- However, the test may yield a "false positive" 1% of the time $\quad P\left(T \mid Z^{C}\right)=10 / 995$
- 0.5% of the US population has Zika. 5% have it.

$$
P(Z)=\frac{995}{1000}=0.005
$$

What is the probability you have Zika (event Z) given that you test positive (event T)?

Suppose we had 1000 people:

- 5 have Zika and and test positive
- 985 do not have Zika and test negative
- 10 do not have Zika and test positive

$$
\frac{5}{5+10}=\frac{1}{3} \approx 0.33
$$

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive") $P(T \mid Z)=0.98$
- However, the test may yield a "false positive" 1% of the time $P\left(T \mid Z^{c}\right)=0.01$
- 0.5% of the US population has Zika. $\quad P(Z)=0.005$

What is the probability you test negative (event T^{c}) give you have Zika (event Z)?

$$
P(T \mid 2)=1-P(T \mid 2)=0.02
$$

Conditional Probability Define a Probability Space

The probability conditioned on A satisfies the required axioms.

Example. $\mathbb{P}\left(\mathcal{B}^{c} \mid \mathcal{A}\right)=1-\mathbb{P}(\mathcal{B} \mid \mathcal{A})$

Conditional Probability Define a Probability Space

The probability conditioned on A follows the same properties as (unconditional) probability.

Example. $\mathbb{P}\left(\mathcal{B}^{C} \mid \mathcal{A}\right)=1-\mathbb{P}(\mathcal{B} \mid \mathcal{A})$

Formally. (Ω, \mathbb{P}) is a probability space $+\mathbb{P}(\mathcal{A})>0$ $\Rightarrow(\mathcal{A}, \mathbb{P}(\cdot \mid \mathcal{A}))$ is a probability space

Axiom 1 (Non-negativity): $P(E) \geq 0$.
Axiom 2 (Normalization): $P(\Omega)=1$
Axiom 3 (Countable Additivity): If E and F are mutually exclusive, then $P(E \cup F)=P(E)+P(F)$

Agenda

- Recap
- Chain Rule
- Independence
- Conditional independence
- Infinite process

Chain Rule

$$
\mathbb{P}(\mathcal{B} \mid \mathcal{A})=\frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})} \quad \square \quad \mathbb{P}(\mathcal{A}) \mathbb{P}(\mathcal{B} \mid \mathcal{A})=\mathbb{P}(\mathcal{A} \cap \mathcal{B})
$$

Theorem. (Chain Rule) For events $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n}$,

$$
\begin{aligned}
\left.\underline{\mathbb{P}\left(\mathcal{A}_{1} \cap \cdots \cap \mathcal{A}_{n}\right)}\right)=\underline{\mathbb{P}\left(\mathcal{A}_{1}\right)} \cdot & \underline{\mathbb{P}\left(\mathcal{A}_{2} \mid \mathcal{A}_{1}\right)} \cdot \mathbb{P}\left(\mathcal{A}_{3} \mid \mathcal{A}_{1} \cap \mathcal{A}_{2}\right) \\
& \cdots \mathbb{P}\left(\mathcal{A}_{n} \mid \mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \cdots \cap \mathcal{A}_{n-1}\right)
\end{aligned}
$$

An easy way to remember: We have n tasks and we can do them sequentially, conditioning on the outcome of previous tasks

Chain Rule Example

$$
P(\text { seq })=\frac{1}{52!}
$$

Have a Standard 52-Card Deck. Shuffle It, and draw the top 3 cards in order. (uniform probability space).

C: 4 of Diamonds Third
$\begin{array}{cc}P(A) \\ 11 & P(B) A) \\ \frac{1}{52} & 11 \\ \frac{1}{51} & P(C \mid A \cap B) \\ 50\end{array}$

51!

Chain Rule Example

$$
P(\text { mort } G d A O)=\frac{1}{51}
$$

Have a Standard 52-Card Deck. Shuffle It, and draw the top 3 cards in order. (uniform probability space).

$$
\begin{gathered}
\mathbb{P}(A) \cdot \mathbb{P}(B \mid A) \cdot \mathbb{P}(C \mid A \cap B) \\
\frac{1}{52} \cdot \frac{1}{51} \cdot \frac{1}{50}
\end{gathered}
$$

$$
\text { C: } 4 \text { of Diamonds Third }
$$

Agenda

- Recap
- Chain Rule
- Independence
- Conditional independence
- Infinite process

Definition. Two events \mathcal{A} and \mathcal{B} are (statistically) independent if

$$
\mathbb{P}(\mathcal{A} \cap \mathcal{B})=\mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B})
$$

Alternatively,

- If $\mathbb{P}(\mathcal{A}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{B} \mid \mathcal{A}) \equiv \mathbb{P}(B)$
- If $\mathbb{P}(\mathcal{B}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A} \mid \mathcal{B})=\mathbb{P}(\mathcal{A})$

Example -- Independence

Toss a coin 3 times. Each of 8 outcomes equally likely.

- $A=\{$ at most one $T\}=\{H H H, H H T, H T H, T H H\}$
- $B=\{$ at most 2 Heads $\}=\{H H H\}^{c}$ Independent?

Multiple Events - Mutual Independence

Definition. Events A_{1}, \ldots, A_{n} are mutually independent if for every non-empty subset $I \subseteq\{1, \ldots, n\}$, we have

$$
P\left(\bigcap_{i \in I} A_{i}\right)=\prod_{i \in I} P\left(A_{i}\right) .
$$

Example - Network Communication

Each link works with the probability given, independently
i.e., mutually independent events A, B, C, D with

$$
\begin{aligned}
& P(A)=p \\
& \hline P(B)=q \\
& P(C)=r \\
& P(D)=s
\end{aligned}
$$

Example - Network Communication

Each link works with the probability given, independently
$P(A)=p$
$P(B)=q$
$P(C)=r$
$P(D)=s$
ie., mutually independent events A, B, C, D

What is $P(1-4$ connected $)$?
$=P(A \cap B)+P(C \cap D)-P(A \cap B \cap C \cap D)$
$P(A) \cdot P(B) \quad P(C) \cdot P(D)$
$r \cdot s$
p.g.r.s

Example - Network Communication

If each link works with the probability given, independently: What's the probability that nodes 1 and $\mathbf{4}$ can communicate?
$P(1-4$ connected $)=P((A \cap B) \cup(C \cap D))$

$$
=P(A \cap B)+P(C \cap D)-P(A \cap B \cap C \cap D)
$$

$P(A \cap B)=P(A) \cdot P(B)=p q$
$P(C \cap D)=P(C) \cdot P(D)=r s$
$P(A \cap B \cap C \cap D)$
$=P(A) \cdot P(B) \cdot P(C) \cdot P(D)=$ pqrs

$$
P(1-4 \text { connected })=p q+r s-p q r s
$$

Independence - Another Look

Definition. Two events A and B are (statistically) independent if

$$
P(A \cap B)=P(A) \cdot P(B) .
$$

"Equivalently." $P(A \mid B)=P(A)$.

Events generated independently $\boldsymbol{\rightarrow}$ their probabilities satisfy independence
But events can be independent without being generated by independent processes.

This can be counterintuitive!

Often probability space (Ω, \mathbb{P}) is defined using independence

Example - Biased coin
We have a biased coin comes up Heads with probability 2/3; Each flip is independent of all other fins. Suppose it is tossed 3 times.

$$
\begin{aligned}
& P\left(H_{1}\right) P\left(H_{t}\right) P\left(H_{3}\right) \\
& \mathbb{P}(H H H)=\frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3}=\left(\frac{2}{3}\right)^{3} \\
& \mathbb{P}(T T T)=\left(\frac{1}{3}\right)^{3} \\
& \mathbb{P}(H T T)=\frac{2}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}=\frac{2}{3}\left(\frac{1}{3}\right)^{2}
\end{aligned}
$$

Example - Biased coin

We have a biased coin comes up Heads with probability 2/3, independently of other flips. Suppose it is tossed 3 times.
$\mathbb{P}(2$ heads in 3 tosses $)=$

slido.com/4171468

