
CSE 312
Foundations of Computing II
Lecture 7: More on independence; start random variables
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Agenda

• Recap
• Independence As An Assumption
• Conditional Independence

• New Topic: Random Variables
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Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let !!, !", … , !# be a partition of the 
sample space, and $, % events. Then,

& % $) = & $ % &(%)
&($) = & $ % &(%)

∑$%!# & $ !$ & !$

Simple Partition: In particular, if ! is an event with non-zero 
probability, then 

& % $) = & $ % &(%)
& $ ! & ! + & $ !& &(!&)
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Chain Rule
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ℙ ℬ # = ℙ # ∩ ℬ
ℙ #

ℙ # ℙ ℬ # = ℙ # ∩ ℬ

Theorem. (Chain Rule) For events #!, #", … ,##  , 

ℙ #! ∩ ⋯∩## = ℙ #! ⋅ ℙ #" #! ⋅ ℙ(#'|#! ∩ #")

⋯ℙ(##|#! ∩ #" ∩ ⋯∩##(!)
An easy way to remember: We have n events and we can evaluate their 
probabilities sequentially, conditioning on the occurrence of previous events.



Independence
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Alternatively,
• If ℙ " ≠ 0, equivalent to ℙ ℬ " = ℙ '
• If ℙ ℬ ≠ 0, equivalent to ℙ " ℬ = ℙ "

Definition. Two events "	and ℬ	are (statistically) independent if

ℙ " ∩ ℬ = ℙ " ⋅ ℙ(ℬ).

“The probability that ℬ occurs after observing "” -- Posterior
=  “The probability that ℬ occurs” -- Prior  



Agenda

• Recap
• Independence As An Assumption
• Conditional Independence

• New Topic: Random Variables
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Independence as an assumption

● People often assume it without justification.
● Example: A sky diver has two chutes

● What is the chance that at least one opens assuming independence?
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$	: event that the main chute doesn’t open ℙ $ = 0.02	
+	: event that the backup doesn’t open ℙ + = 0.1	

P at least one opens 1 Pr nutenopen
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Independence as an assumption

● People often assume it without justification.
● Example: A sky diver has two chutes

● What is the chance that at least one opens assuming independence?

Assuming independence doesn’t justify the assumption! Both chutes could fail 
because of the same rare event e.g., freezing rain.
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$	: event that the main chute doesn’t open ℙ $ = 0.02	
+	: event that the backup doesn’t open ℙ + = 0.1	
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Corollaries of independence of two events

● Example: A sky diver has two chutes

● What is the chance that both open assuming independence?
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$	: event that the main chute doesn’t open ℙ $ = 0.02	
+	: event that the backup doesn’t open ℙ + = 0.1	
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Agenda

• Recap
• Sometimes Independence Occurs for Nonobvious Reasons
• Independence As An Assumption
• Conditional Independence

• New Topic: Random Variables
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Plain Independence. Two events "	and ℬ	are independent if

ℙ " ∩ ℬ = ℙ " ⋅ ℙ(ℬ).

Conditional Independence
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Equivalence: 
• If ℙ " ≠ 0, equivalent to ℙ ℬ " = ℙ '
• If ℙ ℬ ≠ 0, equivalent to ℙ " ℬ = ℙ "

Definition. Two events "	and ℬ	are independent conditioned on . if 
    ℙ . ≠ 0	and ℙ " ∩ ℬ	|	. = ℙ "	|	. ⋅ ℙ ℬ	 .).



Conditional Independence
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Equivalence: 
• If ℙ " ∩ . ≠ 0, equivalent to ℙ ℬ " ∩ . = ℙ '	|	.
• If ℙ ℬ ∩ . ≠ 0, equivalent to ℙ " ℬ ∩ . = ℙ "	|	.

Definition. Two events "	and ℬ	are independent conditioned on . if 
    ℙ . ≠ 0	and ℙ " ∩ ℬ	|	. = ℙ "	|	. ⋅ ℙ ℬ	 .).

1
0T

d



Example – More coin tossing
Suppose there is a coin C1 with Pr(Head) = 0.3 and a coin C2 with 
Pr(Head) = 0.9. We pick one randomly with equal probability and flip that 
coin twice independently. What is the probability both tosses heads?

Pr(22) 	= 	Pr(22	|	.1)	Pr(.1) 	+ 	Pr(22	|	.2)	Pr(.2) LTP

Lindeptossed
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Example – More coin tossing
Suppose there is a coin C1 with Pr(Head) = 0.3 and a coin C2 with 
Pr(Head) = 0.9. We pick one randomly with equal probability and flip that 
coin 2 times independently. What is the probability we get all heads?

Pr(22) 	= 	Pr(22	|	.1)	Pr(.1) 	+ 	Pr(22	|	.2)	Pr(.2)
				= Pr(2 	.1 !Pr(.1) 	+ 	Pr(2 	.2 !	Pr(.2)
				= 0.3! ⋅ 0.5	 + 0.9! ⋅ 0.5 = 0.45

LTP
Conditional 
Independence

Pr(2) 	= 	Pr(2	|	.1)	Pr(.1) 	+ 	Pr(2 	.2 Pr .2 = 0.6

Is Pr 2"2! = 0.45 = Pr 2" Pr 2! ?

Pr 2" Pr 2! = 0.36 ≠ Pr 2"2!
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New topic:  random variables

• Random Variables
• Probability Mass Function (PMF)
• Cumulative Distribution Function (CDF)
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Random Variables (Idea)

Often: We want to capture quantitative properties of the 
outcome of a random experiment, e.g.:
– What is the total of two dice rolls?
– What is the number of coin tosses needed to see the first head?
– What is the number of heads among 5 coin tosses?
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Random Variables

Definition. A random variable (RV) for a probability space 
(Ω, ℙ) is a function .: Ω → ℝ.

The set of values that > can take on is called its range/support Ω)
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Example. Number of heads in 2 independent coin flips Ω = {HH, HT, TH, TT}
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RV Example

20 balls labeled 1, 2, …, 20 in an urn
– Draw a subset of 3 uniformly at random
– Let > = maximum of the 3 numbers on the balls

• Example: - 2, 7, 5 = 7
• Example: - 15, 3, 8 = 15

21
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RV Example

20 balls labeled 1, 2, …, 20 in an urn
– Draw a subset of 3 uniformly at random
– Let > = maximum of the 3 numbers on the balls

• Example: - 2, 7, 5 = 7
• Example: - 15, 3, 8 = 15

– What is |Ω#| ?

22

Poll:

A.  20$	
B.  20
C.  18
D. !%

$  
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11 1 18

104,56
19
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Agenda

• Random Variables
• Probability Mass Function (pmf)
• Cumulative Distribution Function (CDF)
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Example: Returning Homeworks

• Class with 3 students, randomly hand back homeworks.       
All permutations equally likely.

• Let . be the number of students who get their own HW
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!" # # $(#)
1/6 1,	2,	3
1/6 1,	3,	2
1/6 2,	1,	3
1/6 2,	3,	1
1/6 3,	1,	2
1/6 3,	2,	1

- 1 -10 1,3
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Example: Returning Homeworks

• Class with 3 students, randomly hand back homeworks.       
All permutations equally likely.

• Let . be the number of students who get their own HW

!" # # $(#)
1/6 1,	2,	3 3
1/6 1,	3,	2 1
1/6 2,	1,	3 1
1/6 2,	3,	1 0
1/6 3,	1,	2 0
1/6 3,	2,	1 1

Ω 2,	3,	1
2,	3,	1
3,	1,	2
2,	3,	1
1,	3,	2
2,	1,	3
3,	2,	1
2,	3,	1
1,	2,	3

3 4 = 5

3 4 = 6

3 4 = 7

P X 0

P X11 3 2

P X 3 1 6 6

4 1 13211213 1321



Probability Mass Function (PMF)
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Ω
- 8 = 9/

- 8 = 90
- 8 = 91

- 8 = 92
Random variables partition 
the sample space.

Definition. A random variable (RV) for a probability space (Ω, ℙ)
is a function .: Ω → ℝ.
The set of values that > can take on is called its range/support Ω)

Definition. For a RV >: Ω → ℝ, we define the event 

> = V ≝ X ∈ Ω	 > X = V}



Probability Mass Function (PMF)

Definition. For a RV >: Ω → ℝ, we define the event 

> = V ≝ X ∈ Ω > X = V}
The probability mass function (PMF) of > tells us the probabilities of 
these events, i.e., the probability that > takes each value in Ω#

We use the notation

For the probability mass function

2*(3) = ℙ . = 3 = ℙ( 4 ∈ Ω	 . 4 = 3})

8
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ℙ . = 3 = 1



Probability Mass Function

Flipping two independent coins

- = number of heads in the two Ilips
- LL = 2 - LM = 1 - ML = 1 - MM = 0

What is the pmf of  >? 
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Ω = {HH, HT, TH, TT}

Ω# = {0, 1, 2}
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Probability Mass Function

Flipping two independent coins

- = number of heads in the two Ilips
- LL = 2 - LM = 1 - ML = 1 - MM = 0
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Ω = {HH, HT, TH, TT}

Ω# = {0, 1, 2}

Pr - = / =

1
4 , / = 0
1
2 , / = 1
1
4 , / = 2
0, 	 2. 4.

o
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RV Example

20 balls labeled 1, 2, …, 20 in a bin
– Draw a subset of 3 uniformly at random
– Let - = maximum of the 3 numbers on the balls

What is Z5(20) = [(> = 20)?
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Poll: 

A.  \
!"
! !"

#

B.  \
$%
! !"

#
C.  ]"6! !"

#
D.  ]"6⋅"8 !"

#
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Agenda

• Random Variables
• Probability Mass Function (PMF)
• Cumulative Distribution Function (CDF)
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Cumulative Distribution Function (CDF)

Definition. For a RV >: Ω → ℝ, the cumulative distribution function of 
> specifies for any real number V, the probability that > ≤ V.

F5 V = Pr(> ≤ V)

36

Go back to 2 coin flips, where - is the number of heads

Pr - = / =

1
4 , / = 0
1
2 , / = 1
1
4 , / = 2
0, 	 2. 4.

P xF P X x xeRx
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Cumulative Distribution Function (CDF)

Definition. For a RV >: Ω → ℝ, the cumulative distribution function of 
> specifies for any real number V, the probability that > ≤ V.

F5 V = Pr(> ≤ V)

37

Go back to 2 coin clips, where - is the number of heads

9! / = 	

0, 	 / < 0
1
4 , 0 ≤ / < 1
3
4 , 1 ≤ / < 2
1, 	 2 ≤ /

Pr - = / =

1
4 , / = 0
1
2 , / = 1
1
4 , / = 2
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