CSE 312
 Foundations of Computing II

Lecture 7: More on independence; start random variables
slido.com/4171468
for polls and anonymous questions

Agenda

- Recap
- Independence As An Assumption
- Conditional Independence
- New Topic: Random Variables

Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let $E_{1}, E_{2}, \ldots, E_{n}$ be a partition of the sample space, and F, G events. Then,

$$
P(G \mid F)=\frac{P(F \mid G) P(G)}{P(F)}=\frac{P(F \mid G) P(G)}{\sum_{i=1}^{n} P\left(F \mid E_{i}\right) P\left(E_{i}\right)}
$$

Simple Partition: In particular, if E is an event with non-zero probability, then

$$
P(G \mid F)=\frac{P(F \mid G) P(G)}{P(F \mid E) P(E)+P\left(F \mid E^{C}\right) P\left(E^{C}\right)}
$$

Chain Rule

$$
\mathbb{P}(\mathcal{B} \mid \mathcal{A})=\frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})} \quad \square \quad \mathbb{P}(\mathcal{A}) \mathbb{P}(\mathcal{B} \mid \mathcal{A})=\mathbb{P}(\mathcal{A} \cap \mathcal{B})
$$

Theorem. (Chain Rule) For events $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n}$,

$$
\mathbb{P}\left(\mathcal{A}_{1} \cap \cdots \cap \mathcal{A}_{n}\right)=\mathbb{P}\left(\mathcal{A}_{1}\right) \cdot \mathbb{P}\left(\mathcal{A}_{2} \mid \mathcal{A}_{1}\right) \cdot \mathbb{P}\left(\mathcal{A}_{3} \mid \mathcal{A}_{1} \cap \mathcal{A}_{2}\right)
$$

$$
\cdots \mathbb{P}\left(\mathcal{A}_{n} \mid \mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \cdots \cap \mathcal{A}_{n-1}\right)
$$

An easy way to remember: We have n events and we can evaluate their probabilities sequentially, conditioning on the occurrence of previous events.

Independence

Definition. Two events \mathcal{A} and \mathcal{B} are (statistically) independent if

$$
\mathbb{P}(\mathcal{A} \cap \mathcal{B})=\mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B}) .
$$

Alternatively,

- If $\mathbb{P}(\mathcal{A}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{B} \mid \mathcal{A})=\mathbb{P}(B)$
- If $\mathbb{P}(\mathcal{B}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A} \mid \mathcal{B})=\mathbb{P}(\mathcal{A})$
"The probability that \mathcal{B} occurs after observing \mathcal{A} " -- Posterior
= "The probability that \mathcal{B} occurs" -- Prior

Agenda

- Recap
- Independence As An Assumption
- Conditional Independence
- New Topic: Random Variables

Independence as an assumption

- People often assume it without justification.
- Example: A sky diver has two chutes
A : event that the main chute doesn't open
B : event that the backup doesn't open

$$
\begin{aligned}
& \mathbb{P}(A)=0.02 \\
& \mathbb{P}(B)=0.1
\end{aligned}
$$

- What is the chance that at least one opens assuming independence?

$$
\begin{aligned}
P(\text { at least ore opens }) & =1-P r(\text { neutron open }) \\
& =1-P(A \cap B) \\
& =1-P\left(A^{4}\right) P(B) \\
& =1-0.02 \cdot 0.1 \\
& =0.998
\end{aligned}
$$

Independence as an assumption

- People often assume it without justification.
- Example: A sky diver has two chutes
A : event that the main chute doesn't open

$$
\begin{aligned}
& \mathbb{P}(A)=0.02 \\
& \mathbb{P}(B)=0.1
\end{aligned}
$$

B : event that the backup doesn't open

- What is the chance that at least one opens assuming independence?

$$
P(A(B)=1
$$

Assuming independence doesn't justify the assumption! Both chutes could fail because of the same rare event e.g., freezing rain.

Corollaries of independence of two events

- Example: A sky diver has two chutes
A : event that the main chute doesn't open

$$
B: \text { event that the backup doesn't open }
$$

$$
\begin{aligned}
& \mathbb{P}(A)=0.02 \\
& \mathbb{P}(B)=0.1
\end{aligned}
$$

- What is the chance that both open assuming independence?

$$
\begin{aligned}
& P(\bar{A} \cap \bar{B}) \\
= & 1-P(A \cup B) \\
= & 1-[P(A)+P(B)-P(A \cap B)] \\
= & 1-P(A)-P(B)+P(A) P(B) \\
= & (1-P(A))(1-P(B)) \\
= & (\bar{P}(\bar{A}) P(\bar{B})
\end{aligned}
$$

Agenda

- Recap
- Sometimes Independence Occurs for Nonobvious Reasons
- Independence As An Assumption
- Conditional Independence
- New Topic: Random Variables

Conditional Independence

Definition. Two events \mathcal{A} and \mathcal{B} are independent conditioned on C if

$$
\mathbb{P}(C) \neq 0 \text { and } \mathbb{P}(\mathcal{A} \cap \mathcal{B} \mid C)=\mathbb{P}(\mathcal{A} \mid C) \cdot \mathbb{P}(\mathcal{B} \mid C) .
$$

Plain Independence. Two events \mathcal{A} and \mathcal{B} are independent if

$$
\mathbb{P}(\mathcal{A} \cap \mathcal{B})=\mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B}) .
$$

Equivalence:

- If $\mathbb{P}(\mathcal{A}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{B} \mid \mathcal{A})=\mathbb{P}(B)$
- If $\mathbb{P}(\mathcal{B}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A} \mid \mathcal{B})=\mathbb{P}(\mathcal{A})$

Example - More coin tossing
Suppose there is a coin C1 with $\operatorname{Pr}(\mathrm{Head})=0.3$ and a coin C2 with $\operatorname{Pr}($ Head $)=0.9$. We pick one randomly with equal probability and flip that coin twice independently. What is the probability both tosses heads?

$$
\begin{aligned}
\operatorname{Pr}\left(H_{1} H_{2}\right) & =\operatorname{Pr}(H H \mid C 1) \operatorname{Pr}(C 1)+\operatorname{Pr}(H H \mid C 2) \operatorname{Pr}(C 2) \\
& =P\left(H \mid G_{1}\right) P(H \mid \boldsymbol{Q}) P(C 1)+\operatorname{P(H(C2)} \mathbf{P}(H / C 2) P(C 2)
\end{aligned}
$$

Example - More coin tossing

Suppose there is a coin C1 with $\operatorname{Pr}(\mathrm{Head})=0.3$ and a coin C2 with $\operatorname{Pr}($ Head $)=0.9$. We pick one randomly with equal probability and flip that coin 2 times independently. What is the probability we get all heads?

LTP
Conditional Independence

New topic: random variables

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)

Random Variables (Idea)

Often: We want to capture quantitative properties of the outcome of a random experiment, e.g.:

- What is the total of two dice rolls?
- What is the number of coin tosses needed to see the first head?
- What is the number of heads among 5 coin tosses?

Random Variables

Definition. A random variable (RV) for a probability space (Ω, \mathbb{P}) is a function $X: \Omega \rightarrow \mathbb{R}$.

The set of values that X can take on is called its range/support Ω_{X}
Example. Number of heads in 2 independent coin flips $\Omega=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$

20 balls labeled $1,2, \ldots, 20$ in an urn

- Draw a subset of 3 uniformly at random
- Let $X=$ maximum of the 3 numbers on the balls
- Example: $X(2,7,5)=7$
- Example: $X(\underline{15,3,8)}=15$

RV Example

20 balls labeled $1,2, \ldots, 20$ in an urn

- Draw a subset of 3 uniformly at random
- Let $X=$ maximum of the 3 numbers on the balls
- Example: $X(2,7,5)=7$
- Example: $X(15,3,8)=15$

Poll:
slido.com/4171468

- What is $\left|\Omega_{\mathrm{X}}\right|$?

$$
\left|\Omega_{\mathbf{x}}\right|=18 \quad \begin{aligned}
& \text { A. } 20^{3} \\
& \begin{array}{l}
\text { B. } 20 \\
\text { C. } 18 \\
\text { D. }\binom{20}{3}
\end{array}
\end{aligned}
$$

(123)

Agenda

- Random Variables
- Probability Mass Function (mf)
- Cumulative Distribution Function (CDF)
$\Omega, \quad P(w) \quad \forall w \in \Omega$
${ }^{\text {r.v.s }} \Omega_{x}$

$$
\begin{aligned}
& \text { what is prob } \\
& r-v_{1} \text { tales each vole? }
\end{aligned}
$$

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

$\operatorname{Pr}(\boldsymbol{\omega})$	$\boldsymbol{\omega}$	$X(\boldsymbol{\omega})$
$1 / 6$	$1,2,3$	$\boldsymbol{3}$
$1 / 6$	$1,3,2$	\boldsymbol{Q}
$1 / 6$	$2,1,3$	$\mathbf{1}$
$1 / 6$	$2,3,1$	\mathbf{Q}
$1 / 6$	$3,1,2$	\boldsymbol{Q}
$1 / 6$	$3,2,1$	$\boldsymbol{~}$

$$
\Omega_{x}=\{0,1,3\}
$$

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

$\operatorname{Pr}(\boldsymbol{\omega})$	$\boldsymbol{\omega}$	$\boldsymbol{X}(\boldsymbol{\omega})$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

Probability Mass Function (PMF)

Definition. A random variable (RV) for a probability space (Ω, \mathbb{P}) is a function $X: \Omega \rightarrow \mathbb{R}$.

The set of values that X can take on is called its range/support Ω_{X}
Random variables partition the sample space.

Definition. For a $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, we define the event

$$
\{X=x\} \xlongequal{\text { def }}\{\omega \in \Omega \mid X(\omega)=x\}
$$

Probability Mass Function (PMF)

Definition. For a RV $X: \Omega \rightarrow \mathbb{R}$, we define the event

$$
\{X=x\} \xlongequal{\text { def }}\{\omega \in \Omega \mid X(\omega)=x\}
$$

The probability mass function (PMF) of X tells us the probabilities of these events, ie., the probability that X takes each value in Ω_{X}

We use the notation

$$
p_{X}(x)=\mathbb{P}(X=x)=\mathbb{P}(\{\omega \in \Omega \mid X(\omega)=x\})
$$

For the probability mass function

Probability Mass Function prob $\frac{1}{2}$ \& conngup Its^{2}

Flipping two independent coins $\quad \Omega=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$
$X=$ number of heads in the two flips

$$
\left.\begin{array}{rl}
=\text { number of heads in the two flips } & \\
X(H H)=2 & X(H T)=1
\end{array} X(T H)=1 \quad X(T T)=0\right\}
$$

What is the emf of X ?

Probability Mass Function

Flipping two independent coins

$$
\Omega=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}
$$

$X=$ number of heads in the two flips

$$
\begin{array}{rlrl}
X(H H)=2 & X(H T) & =1 \quad X(T H)=1 \quad X(T T)=0 \\
\Omega_{\mathrm{X}} & =\{0,1,2\} &
\end{array}
$$

$$
\operatorname{Pr}(X=x)= \begin{cases}\frac{1}{4}, & x=0 \\ \frac{1}{2}, & x=1 \\ \frac{1}{4}, & x=2 \\ 0, & \text { o.w. }\end{cases}
$$

RV Example

20 balls labeled $1,2, \ldots, 20$ in a bin

- Draw a subset of 3 uniformly at random
- Let $X=$ maximum of the 3 numbers on the balls

Poll: slido.com/4171468

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)

$$
P_{x}(x)=P(X=x) \quad \forall x \in \Omega_{x}
$$

Cumulative Distribution Function (CDF)

Definition. For a RV $X: \Omega \rightarrow \mathbb{R}$, the cumulative distribution function of X specifies for any real number x, the probability that $X \leq x$.

$$
\mathrm{F}_{X}(x)=\operatorname{Pr}(X \leq x)
$$

Go back to 2 coin flips, where X is the number of heads
$\operatorname{Pr}(X=x)= \begin{cases}\frac{1}{4}, & x=0 \\ \frac{1}{2}, & x=1 \\ \frac{1}{4}, & x=2 \\ 0, & \text { o.w. }\end{cases}$

Cumulative Distribution Function (CDF)

Definition. For a $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, the cumulative distribution function of X specifies for any real number x, the probability that $X \leq x$.

$$
\mathrm{F}_{X}(x)=\operatorname{Pr}(X \leq x)
$$

Go back to 2 coin clips, where X is the number of heads

$$
\operatorname{Pr}(X=x)=\left\{\begin{array}{ll}
\frac{1}{4}, & x=0 \\
\frac{1}{2}, & x=1 \\
\frac{1}{4}, & x=2
\end{array} \quad F_{X}(x)=\left\{\begin{array}{lr}
0, & x<0 \\
\frac{1}{4}, & 0 \leq x<1 \\
\frac{3}{4}, & 1 \leq x<2 \\
1, & 2 \leq x
\end{array}\right.\right.
$$

