CSE 312
 Foundations of Computing II

Lecture 7: More on independence; start random variables
slido.com/4171468
for polls and anonymous questions

Agenda

- Recap
- Independence As An Assumption
- Conditional Independence
- New Topic: Random Variables

Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let $E_{1}, E_{2}, \ldots, E_{n}$ be a partition of the sample space, and F, G events. Then,

$$
P(G \mid F)=\frac{P(F \mid G) P(G)}{P(F)}=\frac{P(F \mid G) P(G)}{\sum_{i=1}^{n} P\left(F \mid E_{i}\right) P\left(E_{i}\right)}
$$

Simple Partition: In particular, if E is an event with non-zero probability, then

$$
P(G \mid F)=\frac{P(F \mid G) P(G)}{P(F \mid E) P(E)+P\left(F \mid E^{C}\right) P\left(E^{C}\right)}
$$

Chain Rule

$$
\mathbb{P}(\mathcal{B} \mid \mathcal{A})=\frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})} \quad \square \mathbb{P}(\mathcal{A}) \mathbb{P}(\mathcal{B} \mid \mathcal{A})=\mathbb{P}(\mathcal{A} \cap \mathcal{B})
$$

Theorem. (Chain Rule) For events $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n}$,

$$
\mathbb{P}\left(\mathcal{A}_{1} \cap \cdots \cap \mathcal{A}_{n}\right)=\mathbb{P}\left(\mathcal{A}_{1}\right) \cdot \mathbb{P}\left(\mathcal{A}_{2} \mid \mathcal{A}_{1}\right) \cdot \mathbb{P}\left(\mathcal{A}_{3} \mid \mathcal{A}_{1} \cap \mathcal{A}_{2}\right)
$$

$$
\cdots \mathbb{P}\left(\mathcal{A}_{n} \mid \mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \cdots \cap \mathcal{A}_{n-1}\right)
$$

An easy way to remember: We have n events and we can evaluate their probabilities sequentially, conditioning on the occurrence of previous events.

Independence

Definition. Two events \mathcal{A} and \mathcal{B} are (statistically) independent if

$$
\mathbb{P}(\mathcal{A} \cap \mathcal{B})=\mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B})
$$

Alternatively,

- If $\mathbb{P}(\mathcal{A}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{B} \mid \mathcal{A})=\mathbb{P}(B)$
- If $\mathbb{P}(\mathcal{B}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A} \mid \mathcal{B})=\mathbb{P}(\mathcal{A})$
"The probability that \mathcal{B} occurs after observing \mathcal{A} " -- Posterior
= "The probability that \mathcal{B} occurs" -- Prior

Agenda

- Recap
- Independence As An Assumption
- Conditional Independence
- New Topic: Random Variables

Independence as an assumption

- People often assume it without justification.
- Example: A sky diver has two chutes
A : event that the main chute doesn't open
$\mathbb{P}(A)=0.02$
B : event that the backup doesn't open
$\mathbb{P}(B)=0.1$
- What is the chance that at least one opens assuming independence?

Independence as an assumption

- People often assume it without justification.
- Example: A sky diver has two chutes
A : event that the main chute doesn't open
$\mathbb{P}(A)=0.02$
B : event that the backup doesn't open
$\mathbb{P}(B)=0.1$
- What is the chance that at least one opens assuming independence?

Assuming independence doesn't justify the assumption! Both chutes could fail because of the same rare event e.g., freezing rain.

Corollaries of independence of two events

- Example: A sky diver has two chutes
A : event that the main chute doesn't open
$\mathbb{P}(A)=0.02$
B : event that the backup doesn't open
$\mathbb{P}(B)=0.1$
- What is the chance that both open assuming independence?

Agenda

- Recap
- Sometimes Independence Occurs for Nonobvious Reasons
- Independence As An Assumption
- Conditional Independence
- New Topic: Random Variables

Conditional Independence

Definition. Two events \mathcal{A} and \mathcal{B} are independent conditioned on C if

$$
\mathbb{P}(C) \neq 0 \text { and } \mathbb{P}(\mathcal{A} \cap \mathcal{B} \mid C)=\mathbb{P}(\mathcal{A} \mid C) \cdot \mathbb{P}(\mathcal{B} \mid C) .
$$

Plain Independence. Two events \mathcal{A} and \mathcal{B} are independent if

$$
\mathbb{P}(\mathcal{A} \cap \mathcal{B})=\mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B})
$$

Equivalence:

- If $\mathbb{P}(\mathcal{A}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{B} \mid \mathcal{A})=\mathbb{P}(B)$
- If $\mathbb{P}(\mathcal{B}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A} \mid \mathcal{B})=\mathbb{P}(\mathcal{A})$

Conditional Independence

Definition. Two events \mathcal{A} and \mathcal{B} are independent conditioned on C if $\mathbb{P}(C) \neq 0$ and $\mathbb{P}(\mathcal{A} \cap \mathcal{B} \mid C)=\mathbb{P}(\mathcal{A} \mid C) \cdot \mathbb{P}(\mathcal{B} \mid C)$.

Equivalence:

- If $\mathbb{P}(\mathcal{A} \cap C) \neq 0$, equivalent to $\mathbb{P}(\mathcal{B} \mid \mathcal{A} \cap C):=\mathbb{P}(B \mid C)$
- If $\mathbb{P}(\mathcal{B} \cap C) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A} \mid \mathcal{B} \cap C)=\mathbb{P}(\mathcal{A} \mid C)$

Example - More coin tossing

Suppose there is a coin C 1 with $\operatorname{Pr}(\mathrm{Head})=0.3$ and a coin C2 with $\operatorname{Pr}($ Head $)=0.9$. We pick one randomly with equal probability and flip that coin twice independently. What is the probability both tosses heads?

$$
\operatorname{Pr}(H H)=\operatorname{Pr}(H H \mid C 1) \operatorname{Pr}(C 1)+\operatorname{Pr}(H H \mid C 2) \operatorname{Pr}(C 2)
$$

Example - More coin tossing

Suppose there is a coin C1 with $\operatorname{Pr}(\mathrm{Head})=0.3$ and a coin C2 with $\operatorname{Pr}($ Head $)=0.9$. We pick one randomly with equal probability and flip that coin 2 times independently. What is the probability we get all heads?

$$
\begin{array}{rlrl}
\operatorname{Pr}(H H) & =\operatorname{Pr}(H H \mid C 1) \operatorname{Pr}(C 1)+\operatorname{Pr}(H H \mid C 2) \operatorname{Pr}(C 2) & \text { LTP } \\
& =\operatorname{Pr}(H \mid C 1)^{2} \operatorname{Pr}(C 1)+\operatorname{Pr}(H \mid C 2)^{2} \operatorname{Pr}(C 2) & & \text { Conditional } \\
& =0.3^{2} \cdot 0.5+0.9^{2} \cdot 0.5=0.45 & & \text { Independence }
\end{array}
$$

Is $\operatorname{Pr}\left(H_{1} H_{2}\right)=0.45=\operatorname{Pr}\left(H_{1}\right) \operatorname{Pr}\left(H_{2}\right)$?

$$
\operatorname{Pr}(H)=\operatorname{Pr}(H \mid C 1) \operatorname{Pr}(C 1)+\operatorname{Pr}(H \mid C 2) \operatorname{Pr}(C 2)=0.6
$$

$\operatorname{Pr}\left(H_{1}\right) \operatorname{Pr}\left(H_{2}\right)=0.36 \neq \operatorname{Pr}\left(H_{1} H_{2}\right)$

New topic: random variables

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)

Random Variables (Idea)

Often: We want to capture quantitative properties of the outcome of a random experiment, e.g.:

- What is the total of two dice rolls?
- What is the number of coin tosses needed to see the first head?
- What is the number of heads among 5 coin tosses?

Random Variables

Definition. A random variable (RV) for a probability space (Ω, \mathbb{P}) is a function $X: \Omega \rightarrow \mathbb{R}$.

The set of values that X can take on is called its range/support Ω_{X}
Example. Number of heads in 2 independent coin flips $\Omega=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$

RV Example

20 balls labeled 1, 2, ... , 20 in an urn

- Draw a subset of 3 uniformly at random
- Let $X=$ maximum of the 3 numbers on the balls
- Example: $X(2,7,5)=7$
- Example: $X(15,3,8)=15$

RV Example

20 balls labeled 1, 2, ... , 20 in an urn

- Draw a subset of 3 uniformly at random
- Let $X=$ maximum of the 3 numbers on the balls
- Example: $X(2,7,5)=7$
- Example: $X(15,3,8)=15$
- What is $\left|\Omega_{\mathrm{X}}\right|$?

Poll:
slido.com/4171468
A. 20^{3}
B. 20
C. 18
D. $\binom{20}{3}$

Agenda

- Random Variables
- Probability Mass Function (pmf)
- Cumulative Distribution Function (CDF)

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

$\operatorname{Pr}(\boldsymbol{\omega})$	$\boldsymbol{\omega}$	$\boldsymbol{X}(\boldsymbol{\omega})$
$1 / 6$	$1,2,3$	
$1 / 6$	$1,3,2$	
$1 / 6$	$2,1,3$	
$1 / 6$	$2,3,1$	
$1 / 6$	$3,1,2$	
$1 / 6$	$3,2,1$	

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

$\operatorname{Pr}(\omega)$	$\boldsymbol{\omega}$	$\boldsymbol{X}(\boldsymbol{\omega})$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

Probability Mass Function (PMF)

Definition. A random variable (RV) for a probability space (Ω, \mathbb{P}) is a function $X: \Omega \rightarrow \mathbb{R}$.

The set of values that X can take on is called its range/support Ω_{X}
Random variables partition the sample space.

Definition. For a $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, we define the event

$$
\{X=x\} \xlongequal{\text { def }}\{\omega \in \Omega \mid X(\omega)=x\}
$$

Probability Mass Function (PMF)

Definition. For a RV $X: \Omega \rightarrow \mathbb{R}$, we define the event

$$
\{X=x\} \stackrel{\text { def }}{=}\{\omega \in \Omega \mid X(\omega)=x\}
$$

The probability mass function (PMF) of X tells us the probabilities of these events, i.e., the probability that X takes each value in Ω_{X}

We use the notation

$$
p_{X}(x)=\mathbb{P}(X=x)=\mathbb{P}(\{\omega \in \Omega \mid X(\omega)=x\})
$$

For the probability mass function

$$
\sum_{x \in \Omega_{X}} \mathbb{P}(X=x)=1
$$

Probability Mass Function

Flipping two independent coins

$$
\Omega=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}
$$

$X=$ number of heads in the two flips

$$
X(H H)=2 \quad X(H T)=1 \quad X(T H)=1 \quad X(T T)=0
$$

$$
\Omega_{\mathrm{X}}=\{0,1,2\}
$$

What is the pmf of X ?

Probability Mass Function

Flipping two independent coins

$$
\Omega=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}
$$

$X=$ number of heads in the two flips

$$
\begin{gathered}
X(H H)=2 \quad X(H T)=1 \quad X(T H)=1 \quad X(T T)=0 \\
\Omega_{\mathrm{X}}=\{0,1,2\}
\end{gathered}
$$

$$
\operatorname{Pr}(X=x)= \begin{cases}\frac{1}{4}, & x=0 \\ \frac{1}{2}, & x=1 \\ \frac{1}{4}, & x=2 \\ 0, & \text { o.w. }\end{cases}
$$

RV Example

20 balls labeled $1,2, \ldots, 20$ in a bin

- Draw a subset of 3 uniformly at random
- Let $X=$ maximum of the 3 numbers on the balls

What is $p_{X}(20)=P(X=20)$?
Poll: slido.com/4171468
A. $\begin{gathered}\binom{20}{2}\end{gathered}$ B. $\binom{20}{3}$
C. $\quad 19^{2} /\binom{20}{3}$
D. $19 \cdot 18 /\binom{20}{3}$

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)

Cumulative Distribution Function (CDF)

Definition. For a RV $X: \Omega \rightarrow \mathbb{R}$, the cumulative distribution function of X specifies for any real number x, the probability that $X \leq x$.

$$
\mathrm{F}_{X}(x)=\operatorname{Pr}(X \leq x)
$$

Go back to 2 coin flips, where X is the number of heads
$\operatorname{Pr}(X=x)= \begin{cases}\frac{1}{4}, & x=0 \\ \frac{1}{2}, & x=1 \\ \frac{1}{4}, & x=2 \\ 0, & \text { o.w. }\end{cases}$

Cumulative Distribution Function (CDF)

Definition. For a RV $X: \Omega \rightarrow \mathbb{R}$, the cumulative distribution function of X specifies for any real number x, the probability that $X \leq x$.

$$
\mathrm{F}_{X}(x)=\operatorname{Pr}(X \leq x)
$$

Go back to 2 coin clips, where X is the number of heads
$\operatorname{Pr}(X=x)=\left\{\begin{array}{llr}\frac{1}{4}, & x=0 \\ \frac{1}{2}, & x=1 \\ \frac{1}{4}, & x=2\end{array} \quad F_{X}(x)=\left\{\begin{array}{lr}0, & x<0 \\ \frac{1}{4}, & 0 \leq x<1 \\ \frac{3}{4}, & 1 \leq x<2 \\ 1, & 2 \leq x\end{array}\right.\right.$

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

$\operatorname{Pr}(\omega)$	$\boldsymbol{\omega}$	$\boldsymbol{X}(\boldsymbol{\omega})$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

$\operatorname{Pr}(\boldsymbol{\omega})$	$\boldsymbol{\omega}$	$\boldsymbol{X}(\boldsymbol{\omega})$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

Example - Number of Heads

We flip n coins, independently, each heads with probability p
$\Omega=\{$ HH \cdots HH, HH \cdots HT, HH \cdots TH, \ldots, TT \cdots TT $\}$
$X=$ \# of heads

$$
p_{X}(k)=P(X=k)=
$$

Example - Number of Heads

We flip n coins, independently, each heads with probability p
$\Omega=\{$ HH \cdots HH, HH \cdots HT, HH \cdots TH, \ldots, TT \cdots TT $\}$
$X=$ \# of heads

