CSE 312
Foundations of Computing II
Lecture 8: More on random variables; expectation
www. slido.com/4171468

Last Class:

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)

Today:

- Recap
- Expectation
- Linearity of Expectation
- Indicator Random Variables

Review Random Variables

Definition. A random variable (RV) for a probability space (Ω, P) is a function $X \Omega \rightarrow \Omega$.
The set of values that X can take on is its range/support: Ω_{X}

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

$\operatorname{Pr}(\boldsymbol{\omega})$	$\boldsymbol{\omega}$	$\boldsymbol{X}(\boldsymbol{\omega})$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

$$
\Omega_{x}=\{0,1,3\}
$$

Review Random Variables

Definition. A random variable (RV) for a probability space (Ω, P) is a function $X: \Omega \rightarrow \mathbb{R}$.

The set of values that X can take on is its range/support: Ω_{x}

$$
\left\{X=x_{i}\right\}=\left\{\omega \in \Omega \mid X(\omega)=x_{i}\right\}
$$

Random variables partition the sample space.

$$
\Sigma_{x \in X(\Omega)} P(X=x)=1
$$

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

$\operatorname{Pr}(\boldsymbol{\omega})$	$\boldsymbol{\omega}$	$\boldsymbol{X}(\boldsymbol{\omega})$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

Review PMF and CDF

Definitions:
For a $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, the probability mass function (pmf) of X specifies, for any real number x, the probability that $X=x$

$$
p_{X}(x)=P(X=x)=P(\{\omega \in \Omega \mid X(\omega)=x\})
$$

$$
\sum_{x \in \Omega_{X}} p_{X}(x)=1
$$

For a $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, the cumulative distribution function (cdf) of X specifies, for any real number x, the probability that $X \leq x$

$$
F_{X}(x)=P(X \leq x)
$$

Example - Two fair independent coin flips

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

$\operatorname{Pr}(\boldsymbol{\omega})$	$\boldsymbol{\omega}$	$\boldsymbol{X}(\boldsymbol{\omega})$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

$\operatorname{Pr}(\boldsymbol{\omega})$	$\boldsymbol{\omega}$	$\boldsymbol{X}(\boldsymbol{\omega})$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

Cumulative Distribution Fn CDF F_{X}

$$
\begin{aligned}
& p_{\mathbf{X}}(0)=P(X=0)=1 / 3 \\
& p_{\mathrm{X}}(1)=P(X=1)=1 / 2 \\
& \mathrm{p}_{\mathrm{X}}(3)=P(X=3)=1 / 6
\end{aligned}
$$

Example - Number of Heads
We flip n coins, independently, each heads with probability p

$x=0,1, \ldots$

Example - Number of Heads

We flip n coins, independently, each heads with probability p
$\Omega=\{$ HF \cdots HB, HB \cdots HT, HB \cdots TH, \ldots, WT \cdots RT $\}$
$X=$ \# of heads

$$
\begin{aligned}
& p_{X}(k)=P(X=k)=\binom{n}{k} \cdot p^{k} \cdot(1-p)^{n-k} \\
& \text { \# of sequences with } k \text { heads } \quad \text { Prob of sequence } w / k \text { heads }
\end{aligned}
$$

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Expectation (Idea)

Example. Toss a coin 20 times independently with probability $1 / 4$ of coming up heads on each toss.
$X=$ number of heads

How many heads do you expect to see?
5

What if you toss it independently n times and it comes up heads with probability p each time?
$n p$

Review Expected Value of a Random Variable

Definition. Given a discrete $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value or mean of X is

$$
\mathbb{E}[X]=\sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)
$$

or equivalently

$$
\mathbb{E}[X]=\sum_{x \in \Omega_{X}} x \cdot P(X=x)=\sum_{x \in \Omega_{X}} x \cdot p_{X}(x)
$$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Expectation

Example. Two fair coin flips
$\Omega=\{\mathrm{TT}, \mathrm{HT}, \mathrm{TH}, \mathrm{HH}\}$
$X=$ number of heads

What is $\mathbb{E}[X]$?

$$
\begin{aligned}
\mathbb{E}[X] & =X(T T) P(T T)+X(H T) P(H T) \\
& +X(T H) P(T H)+X(H H) P(H H) \\
& =0 \cdot \frac{1}{4}+1 \cdot \frac{1}{4}+1 \cdot \frac{1}{4}+2 \cdot \frac{1}{4}=1 \\
\mathbb{E}[X] & =0 \cdot p_{X}(0)+1 \cdot p_{X}(1)+2 \cdot p_{X}(2) \\
& =0 \cdot \frac{1}{4}+1 \cdot \frac{1}{2}+2 \cdot \frac{1}{4}=\frac{1}{2}+\frac{1}{2}=1
\end{aligned}
$$

Example: Returning Homeworks

$$
\begin{aligned}
& \mathbb{E}[X]=\sum_{\omega \in \Omega} X(\omega) \cdot P(\omega) \\
& \mathbb{E}[X]=\sum_{x \boldsymbol{f} \mathbb{X}} x \cdot P(X=x)
\end{aligned}
$$

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW
- What is $\mathbb{E}[X]$?

$$
\begin{aligned}
E(x)= & \begin{aligned}
E(x) & =0 \cdot P(x=0) \\
& +3 \frac{1}{6}=1
\end{aligned} \\
& +1 \cdot P(x=1) \\
& +3 P(x=3)
\end{aligned}
$$

Example: Returning Homeworks

$$
\begin{aligned}
& \mathbb{E}[X]=\sum_{\omega \in \Omega} X(\omega) \cdot P(\omega) \\
& \mathbb{E}[X]=\sum_{x \in \bigvee \mathbb{X}} x \cdot P(X=x)
\end{aligned}
$$

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

$\operatorname{Pr}(\boldsymbol{\omega})$	$\boldsymbol{\omega}$	$\boldsymbol{X}(\boldsymbol{\omega})$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

$\operatorname{Pr}(\boldsymbol{\omega})$	$\boldsymbol{\omega}$	$\boldsymbol{X}(\boldsymbol{\omega})$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

$$
\begin{aligned}
\mathbb{E}[X] & =3 \cdot \frac{1}{6}+1 \cdot \frac{1}{6}+1 \cdot \frac{1}{6}+0 \cdot \frac{1}{6}+0 \cdot \frac{1}{6}+1 \cdot \frac{1}{6} \\
& =6 \cdot \frac{1}{6}=1
\end{aligned}
$$

Example - Flipping a biased coin until you see heads

- Biased coin, each flip indep:

$$
\begin{aligned}
& P(H)=q>0 \\
& P(T)=1-q
\end{aligned}
$$

- $Z=\#$ of coin flips until first head

$$
P(Z=0)=0
$$

$$
P(\overline{Z=1})=9
$$

$$
P(Z=2)=(1-9) 9
$$

$$
P(Z=i)=(1-q)^{-1} 9
$$

$$
\begin{array}{rl}
\mathbb{E}[Z]=\sum_{x \in \Omega}^{2} & x p(2=x)
\end{array}=\sum_{i=1}^{\infty} i p(2=i), ~=\sum^{\infty} i(1-a)^{i-1} q . ~=
$$

Example - Flipping a biased coin until you see heads

- Biased coin, each flip indep:

$$
\begin{aligned}
& P(H)=q>0 \\
& P(T)=1-q
\end{aligned}
$$

- $Z=\#$ of coin flips until first head

$$
\begin{aligned}
& P(Z=i)=q(1-q)^{i-1} \\
& \mathbb{E}[Z]=\sum_{i=1}^{\infty} i \cdot P(Z=i)=\sum_{i=1}^{\infty} i \cdot q(1-q)^{i-1}
\end{aligned}
$$

$$
\text { Converges, so } \mathbb{E}[Z] \text { is finite }
$$

Can calculate this directly but...

Example - Flipping a biased coin until you see heads

- Biased coin, each flip indep:

$$
\begin{aligned}
& P(H)=q>0 \\
& P(T)=1-q
\end{aligned}
$$

- $Z=\#$ of coin flips until first head

Another view: If you get heads first try you get $Z=1$;
If you get tails you have used one try and have the same experiment left
$E[2]=1 \cdot 9+(1-9)(1+E(2))^{\curvearrowleft}$

$$
E(2)=1+(1-q) E(2)
$$

Example - Flipping a biased coin until you see heads

- Biased coin:

$$
\begin{aligned}
& P(H)=q>0 \\
& P(T)=1-q
\end{aligned}
$$

Another view: If you get heads first try you get $Z=1$;
If you get tails you have used one try and have the same experiment left

$$
\mathbb{E}[Z]=q \cdot 1+(1-q)(1+\mathbb{E}(Z))
$$

Solving gives $\quad q \cdot \mathbb{E}[Z]=q+(1-q)=1 \quad$ Implies $\mathbb{E}[Z]=1 / q$

Example - Coin Tosses
We flip n coins, each toss independent, probability p of coming up heads.

$$
\begin{aligned}
E(2) & =\sum_{k=0}^{n} k P(\underline{z}=k) \\
& =\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}
\end{aligned}
$$

Example - Coin Tosses

We flip n coins, each toss independent; heads with probability p, Z is the number of heads, what is $\mathbb{E}[Z]$?

$$
\begin{aligned}
\mathbb{E}[Z] & =\sum_{k=0}^{n} k \cdot P(Z=k)=\sum_{k=0}^{n} k \cdot\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\sum_{k=0}^{n} k \cdot \frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}=\sum_{k=1}^{n} \frac{n!}{(k-1)!(n-k)!} p^{k}(1-p)^{n-k}
\end{aligned}
$$

$$
=n p \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1}(1-p)^{n-k}
$$

Can we solve it more

$$
=n p \sum_{k=0}^{n-1} \frac{(n-1)!}{k!(n-1-k)!} p^{k}(1-p)^{(n-1)-k}
$$ elegantly, please?

$=n p \sum_{k=0}^{n-1}\binom{n-1}{k} p^{k}(1-p)^{(n-1)-k}=n p(p+(1-p))^{n-1}=n p \cdot 1=n p$

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation
- Linearity of Expectation

Theorem. For any two random variables X and Y
(no conditions whatsoever on the random variables)

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]
$$

Or, more generally: For any random variables X_{1}, \ldots, X_{n},

$$
\mathbb{E}\left[X_{1}+\cdots+X_{n}\right]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right]
$$

Because: $\mathbb{E}\left[X_{1}+\cdots+X_{n}\right]=\mathbb{E}\left[\left(X_{1}+\cdots+X_{n-1}\right)+X_{n}\right]$

$$
=\mathbb{E}\left[X_{1}+\cdots+X_{n-1}\right]+\mathbb{E}\left[X_{n}\right]=\cdots
$$

$$
Z(\omega)=(X(\omega))^{2}+4 Y(\omega)
$$

Linearity of Expectation - Proof

Theorem. For any two random variables X and Y
(X, Y do not need to be independent)

$$
\begin{aligned}
& \mathbf{Z}=\mathbf{X}+\mathbf{Y} \mid \mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y] . \\
& \mathbb{E}[X+Y]=\sum_{\sum_{\omega} P(\omega)(X(\omega)+Y(\omega))} \\
&=\sum_{\omega} P(\omega) X(\omega)+\sum_{\omega} P(\omega) Y(\omega)+\boldsymbol{Y}(\omega) \\
&=\mathbb{E}[X]+\mathbb{\omega})+Y]
\end{aligned}
$$

Using LOE to compute complicated expectations

Often boils down to the following three steps:

- Decompose: Finding the right way to decompose the random variable into sum of simple random variables

$$
X=X_{1}+\cdots+X_{n}
$$

- LOE: Apply linearity of expectation.

$$
\mathbb{E}[X]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right] .
$$

- Conquer: Compute the expectation of each X_{i}

Often, X_{i} are indicator (o/1) random variables.

