CSE 312 Foundations of Computing II

Lecture 8: More on random variables; expectation

Last Class:

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)

Today:

- Recap
- Expectation
- Linearity of Expectation
- Indicator Random Variables

ч

U

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

Pr(w)	ω	$X(\boldsymbol{\omega})$	
1/6	1, 2, 3	3	
1/6	1, 3, 2	1	
1/6	2, 1, 3	1	
1/6	2, 3, 1	0	
1/6	3, 1, 2	0	
1/6	3, 2, 1	1	

Review Random Variables

Definition. A random variable (RV) for a probability space (Ω, P) is a function $X: \Omega \to \mathbb{R}$.

The set of values that *X* can take on is its range/support:

$$\{X = x_i\} = \{\omega \in \Omega \mid X(\omega) = x_i\}$$

Random variables **partition** the sample space.

$$\Sigma_{x\in X(\Omega)}P(X=x)=1$$

$$X(\omega) = x_1$$

$$X(\omega) = x_3$$

$$X(\omega) = x_2$$

$$X(\omega) = x_3$$

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

Review PMF and CDF

Definitions:

For a RV $X: \Omega \to \mathbb{R}$, the probability mass function (pmf) of X specifies, for any real number x, the probability that X = x

$$p_X(x) = P(X = x) = P(\{\omega \in \Omega \mid X(\omega) = x\})$$
$$\sum_{x \in \Omega_X} p_X(x) = 1$$

For a RV $X: \Omega \to \mathbb{R}$, the cumulative distribution function (cdf) of X specifies, for any real number x, the probability that $X \leq x$

$$F_X(x) = P(X \le x)$$

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

Pr(w)	ω	$X(\boldsymbol{\omega})$	
1/6	1, 2, 3	3	
1/6	1, 3, 2	1	
1/6	2, 1, 3	1	
1/6	2, 3, 1	0	
1/6	3, 1, 2	0	
1/6	3, 2, 1	1	

Pr(w)

1/6

ω

1, 2, 3

 $X(\boldsymbol{\omega})$

3

Example: Returning Homeworks

Example – Number of Heads

We flip n coins, independently, each heads with probability p

x= 0, 1, 2, -, "

otherwise .

Example – Number of Heads

We flip n coins, independently, each heads with probability p

 $P_{X}(x) = \int (x) P'(1-p)$

 $\Omega = \{HH \cdots HH, HH \cdots HT, HH \cdots TH, \dots, TT \cdots TT\}$

X = # of heads $p_X(k) = P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n-k}$ # of sequences with k heads
Prob of sequence w/k heads

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation <

Expectation (Idea)

Example. Toss a coin 20 times independently with probability ¼ of coming up heads on each toss.

X = number of heads

How many heads do you *expect* to see?

5

What if you toss it independently n times and it comes up heads with probability p each time?

15

Review Expected Value of a Random Variable

Definition. Given a discrete RV $X: \Omega \to \mathbb{R}$, the expectation or expected value or mean of X is $\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)$ or equivalently $\mathbb{E}[X] = \sum_{x \in \Omega_X} x \cdot P(X = x) = \sum_{x \in \Omega_X} x \cdot p_X(x)$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

3 5

Example: Returning Homeworks

 $\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)$ $\mathbb{E}[X] = \sum_{x \in \mathbf{V}} x \cdot P(X = x)$

18

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

 $E(X) = 0 \cdot P(X)$ + 1 · P(X)

+3P

• What is $\mathbb{E}[X]$?

Pr(w)	ω	X(w)	
1/6	2, 3, 1	0	
1/6	3, 1, 2	0	
1/6	1, 3, 2	1	
1/6	3, 2, 1	1	
1/6	2, 1, 3	1	
1/6	1, 2, 3	3	

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks.
 All permutations equally likely.
- Let *X* be the number of students who get their own HW

Pr(w)	ω	$X(\boldsymbol{\omega})$	
1/6	1, 2, 3	3	
1/6	1, 3, 2	1	
1/6	2, 1, 3	1	
1/6	2, 3, 1	0	
1/6	3, 1, 2	0	
1/6	3, 2, 1	1	

 $\mathbb{E}[X] = \sum X(\omega) \cdot P(\omega)$

 $x \cdot P(X = x)$

 $\omega \in \Omega$

 $\mathbb{E}[X] =$

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

Pr(w)	ω	$X(\boldsymbol{\omega})$	
1/6	1, 2, 3	3	- 5
1/6	1, 3, 2	1	EL
1/6	2, 1, 3	1	
1/6	2, 3, 1	0	
1/6	3, 1, 2	0	
1/6	3, 2, 1	1	

$$E[X] = 3 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6} + 0 \cdot \frac{1}{6} + 0 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6}$$
$$= 6 \cdot \frac{1}{6} = 1$$

Example – Flipping a biased coin until you see heads

Can calculate this directly but...

Example – Flipping a biased coin until you see heads

Example – Flipping a biased coin until you see heads

• Biased coin: P(H) = q > 0 P(T) = 1 - q• Z = # of coin flips until first head q = q 1 - q 1 - q 1 - q 1 - q 1 - q 1 - q 1 - q

Another view: If you get heads first try you get Z = 1;

If you get tails you have used one try and have the same experiment left

 $\mathbb{E}[Z] = q \cdot 1 + (1-q)(1 + \mathbb{E}(Z))$

Solving gives $q \cdot \mathbb{E}[Z] = q + (1 - q) = 1$ [mplies $\mathbb{E}[Z] = 1/q$

23

Example – Coin Tosses

We flip n coins, each toss independent, probability p of coming up heads.

Z is the number of heads, what is $\mathbb{E}(Z)$?

$$E(z) = \sum_{k=0}^{n} k P(z=k)$$

= $\sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k}$

Example – Coin Tosses

We flip n coins, each toss independent; heads with probability p,

Z is the number of heads, what is $\mathbb{E}[Z]$? $\mathbb{E}[Z] = \sum_{k=0}^{n} k \cdot P(Z = k) = \sum_{k=0}^{n} k \cdot \binom{n}{k} p^{k} (1-p)^{n-k}$ $= \sum_{k=0}^{n} k \cdot \frac{n!}{k! (n-k)!} p^{k} (1-p)^{n-k} = \sum_{k=1}^{n} \frac{n!}{(k-1)! (n-k)!} p^{k} (1-p)^{n-k}$

$$= np \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)! (n-k)!} p^{k-1} (1-p)^{n-k}$$

$$= np \sum_{k=0}^{n-1} \frac{(n-1)!}{k! (n-1-k)!} p^k (1-p)^{(n-1)-k}$$

Can we solve it more elegantly, please?

$$= np \sum_{k=0}^{n-1} \binom{n-1}{k} p^k (1-p)^{(n-1)-k} = np (p + (1-p))^{n-1} = np \cdot 1 = np$$

This Photo by Unknown Author is licensed under <u>CC BY-NC</u>

25

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation
- Linearity of Expectation <

 $(\chi(\omega)) + \chi(\omega)$ $Z(\omega) =$

Linearity of Expectation – Proof

Using LOE to compute complicated expectations

Often boils down to the following three steps:

<u>Decompose</u>: Finding the right way to decompose the random variable into sum of simple random variables

E(X)

 $X = X_1 + \dots + X_n$ • LOE: Apply linearity of expectation. $\mathbb{E}[X] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n].$ • Conquer: Compute the expectation of each X_i

Often, X_i are indicator (0/1) random variables.

