CSE 312
Foundations of Computing II
Lecture 9: Linearity of expectation, LOTUS and variance
slido.com/3680281

Agenda

- Recap
- Linearity of expectation
- LOTUS
- Variance

Review Random Variables

Definition. A random variable (RV) for a probability space (Ω, P) is a function $X: \Omega \rightarrow \mathbb{R}$.

The set of values that X can take on is its range/support: Ω_{x}
$\left\{X=x_{i}\right\}=\left\{\omega \in \Omega \mid X(\omega)=x_{i}\right\}$
Random variables partition the sample space.

$$
\Sigma_{x \in \boldsymbol{A}(\mathbb{X})} P(X=x)=1
$$

Review PMF and CDF

Definitions:
For a $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, the probability mass function (pmf) of X specifies, for any real number x, the probability that $X=x$

$$
p_{X}(\underline{x})=P(\underline{X=x})=P(\{\omega \in \Omega \mid X(\omega)=x\})
$$

$$
\sum_{x \in \Omega_{X}} p_{X}(x)=1
$$

For a $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, the cumulative distribution function (cdf) of X specifies, for any real number x, the probability that $X \leq x$

$$
F_{X}(x)=P(X \leq x)
$$

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

$\operatorname{Pr}(\boldsymbol{\omega})$	$\boldsymbol{\omega}$	$\boldsymbol{X}(\boldsymbol{\omega})$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

Review Expected Value of a Random Variable

Definition. Given a discrete $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value or mean of X is

$$
\left.\mathbb{E}[X]=\sum_{x \in \Omega_{X}} x \cdot P(X=x)\right\}=\sum_{x \in \Omega_{X}} x \cdot p_{X}(x)
$$

X takes value $\begin{array}{ll}5 \text { witradt } \frac{1}{5} \\ 10 \text { urtupot } \frac{4}{5} & E(X)\end{array} \quad \begin{aligned} & E\left(\frac{1}{5}+10 \cdot \frac{4}{5}\right. \\ &=9\end{aligned}$
Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks.

$$
\mathbb{E}[X]=\sum_{x \in \mathrm{X}(\Omega)} x \cdot P(X=x)
$$ All permutations equally likely.

- Let X be the number of students who get their own HW

$\operatorname{Pr}(\boldsymbol{\omega})$	$\boldsymbol{\omega}$	$\boldsymbol{X}(\boldsymbol{\omega})$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

Review Expected Value of a Random Variable

Definition. Given a discrete $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value or mean of X is

$$
\mathbb{E}[X]=\sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)
$$

or equivalently

$$
\mathbb{E}[X]=\sum_{x \in \Omega_{X}} x \cdot P(X=x)=\sum_{x \in \Omega_{X}} x \cdot p_{X}(x)
$$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Indicator random variable - 0/1 valued

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- For any event, can define the indicator random variable for that event

$$
X_{1}=\left\{\begin{array}{lc}
1 & \text { if person } 1 \text { gets their homework back } \\
0 & \text { otherwise }
\end{array}\right.
$$

$\operatorname{Pr}(\boldsymbol{\omega})$	ω	$\boldsymbol{X}(\boldsymbol{\omega})$	$X_{1}(w)$
1/6	1,2,3	3	1
1/6	1,3, 2	1	1
1/6	2,1,3	1	0
1/6	2,3,1	0	0
1/6	3, 1, 2	0	0
1/6	3, 2, 1	1	0

$$
\begin{gathered}
P\left(X_{1}=1\right)=\frac{1}{3} \\
P\left(X_{1}=0\right)=\frac{2}{3} \\
E\left(X_{1}\right)=2 \cdot P\left(X_{1}=1\right) \\
+0 \cdot P\left(X_{1}=0\right) \\
=P\left(X_{1}=1\right)=\frac{1}{3}
\end{gathered}
$$

$$
X(\omega)+Y(\omega)
$$

Recap Linearity of Expectation

Theorem. For any two random variables X and Y

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y] .
$$

Or, more generally: For any random variables X_{1}, \ldots, X_{n},

$$
\begin{aligned}
& \mathbb{E}\left[X_{1}+\cdots+X_{n}\right]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right] . \\
& \mathbb{E}\left(a_{1} X_{1}+\cdots \tan X_{n}+\boldsymbol{b}\right)=\boldsymbol{a}_{1} \mathbb{E}\left(X_{1}\right)+\cdots \quad \tan E\left(X_{n}\right)+\boldsymbol{b}
\end{aligned}
$$

Theorem. For any random variables X, and constants a and b

$$
\mathbb{E}[a X+b]=a \cdot \mathbb{E}[X]+b
$$

$$
y=3 \underline{x}-5 \quad E(y)=3 E(x)-5
$$

Example - Coin Tosses - The brute force method

We flip n coins, each one heads with probability p, Z is the number of heads, what is $\mathbb{E}[Z]$?

$$
\begin{aligned}
\mathbb{E}[Z] & =\sum_{k=0}^{n} k \cdot P(Z=k)=\sum_{k=0}^{n} k \cdot\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\sum_{k=0}^{n} k \cdot \frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}=\sum_{k=1}^{n} \frac{n!}{(k-1)!(n-k)!} p^{k}(1-p)^{n-k}
\end{aligned}
$$

$$
=n p \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1}(1-p)^{n-k}
$$

Can we solve it more

$$
=n p \sum_{k=0}^{n-1} \frac{(n-1)!}{k!(n-1-k)!} p^{k}(1-p)^{(n-1)-k}
$$ elegantly, please?

$=n p \sum_{k=0}^{n-1}\binom{n-1}{k} p^{k}(1-p)^{(n-1)-k}=n p(p+(1-p))^{n-1}=n p \cdot 1=n p$

Example - Coin Tosses

We flip n coins, each toss independent, comes up heads with probability p Z is the number of heads, what is $\mathbb{E}[Z]$?

$$
X_{i}=\left\{\begin{array}{l}
1, i^{\text {th }} \text { coin flip is heads } \\
0, i^{\text {th }} \text { coin flip is tails. }
\end{array}\right.
$$

Fact. $Z=X_{1}+\cdots+X_{n}$

Outcomes	X_{1}	X_{2}	X_{3}	Z
TTT	0	0	0	0
TTH	0	0	1	1
THT	0	1	0	1
THH	0	1	1	2
HTT	1	0	0	1
HTH	1	0	1	2
HHT	1	1	0	2
HHH	1	1	1	

Example - Coin Tosses

We flip n coins, each toss independent, comes up heads with probability p Z is the number of heads, what is $\mathbb{E}[Z]$?

- $X_{i}=\left\{\begin{array}{l}1, i^{\text {th }} \text { coin flip is heads } \\ 0, \\ 0, i^{\text {th }} \text { coin flip is tails. }\end{array}\right.$

Fact. $Z=X_{1}+\cdots+X_{n}$

Linearity of Expectation:

$$
\mathbb{E}[\underline{Z}]=\mathbb{E}\left[X_{1}+\cdots+X_{n}\right]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right]=n \cdot p
$$

$$
P\left(X_{i}=1\right)=p
$$

$$
P\left(X_{i}=0\right)=1-p
$$

$$
\widehat{\mathbb{E}\left[X_{i}\right]=p \cdot 1+(1-p) \cdot 0=p}
$$

lineangy expectath
 Using LOE to compute complicated expectations

Often boils down to the following three steps:

$$
E(x)=?
$$

- Decompose: Finding the right way to decompose the random variable into sum of simple random variables

$$
X=\underline{X_{1}+\cdots+X_{n}}
$$

- LOE: Apply linearity of expectation.

$$
\mathbb{E}[X]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right] .
$$

- Conquer: Compute the expectation of each X_{i}

Often X_{i} pre indicator (o/1) random variables.

Indicator random variables - 0/1 valued

For any event A, can define the indicator random variable X_{A} for A

$$
X_{A}=\left\{\begin{array}{ll}
1 & \text { if event } A \text { occurs } \\
0 & \text { if event } A \text { does not occur }
\end{array} \begin{array}{l}
P\left(X_{A}=1\right)=P(A) \\
P\left(X_{A}=0\right)=1-P(A)
\end{array}\right.
$$

$$
E\left(X_{A}\right)=P\left(X_{A}=1\right)=P(A)
$$

Example: Returning Homeworks

- Class with n students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

What is $\mathbb{E}[X]$?

$$
E(x)=\sum_{k=0}^{n} k \underbrace{P(x=k)}_{\text {complicated! }}
$$

Example: Returning Homeworks

- Class with n students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

What is $\mathbb{E}[X]$? Use linearity of expectation!

$\operatorname{Pr}(\boldsymbol{\omega})$	$\boldsymbol{\omega}$	$\boldsymbol{X}(\boldsymbol{\omega})$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

Decompose: Find the right way to decompose the random variable into sum of simple random variables

$$
X=X_{1}+\cdots+X_{n}
$$

LOE: Apply linearity of expectation.

$$
\mathbb{E}[X]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right]
$$

Conquer: Compute the expectation of each X_{i} and sum!

Example: Returning Homeworks

- Class with n students, randomly hand back homeworks. permutations equally likely.
- Let X be the number of students who get their own HW

What is $\mathbb{E}[X]$? Use linearity of expectation!

$\operatorname{Pr}(\boldsymbol{\omega})$	$\boldsymbol{\omega}$	$\boldsymbol{X}(\boldsymbol{\omega})$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

Decompose:

$$
X_{i}= \begin{cases}1 & \text { if stent } i \\ \text { got thin back } \\ \text { own nu back } \\ \sigma . \omega_{0}\end{cases}
$$

$$
\begin{aligned}
& X=X_{1}+X_{2}+\cdots+X_{n} \\
& \text { LE: } E(X)=E\left(X_{1}\right)+E\left(X_{2}\right)+\cdots+E\left(X_{n}\right)
\end{aligned}
$$

conquer: $\quad=n \cdot \frac{1}{n}=1$

Example: Returning Homeworks

- Class with n students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

What is $\mathbb{E}[X]$? Use linearity of expectation!
Decompose: What is X_{i} ?

$\operatorname{Pr}(\boldsymbol{\omega})$	$\boldsymbol{\omega}$	$\boldsymbol{X}(\boldsymbol{\omega})$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

$X_{i}=1$ jiff $i^{\text {th }}$ student gets own HW back; o ow.
LOE: $\mathbb{E}[X]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right]$
Conquer: $\mathbb{E}\left[X_{i}\right]=\frac{1}{n}$
Therefore, $\mathbb{E}[X]=n \cdot \frac{1}{n}=1$

$$
m=6
$$

$$
x(\omega)=4
$$

Pair's with the same birthday
$x_{16}+x_{23}+x_{24}+x_{25}+x_{26}$
$+x_{34}+x_{35}+x_{36}-x_{45}+x_{46}$ In a class of m students, on average how many pair
birthday (assuming 365 equally likely birthdays)?
(Each person's birthday is equally likely to be any of the 365 possibilities and different people's days are independent.)

$$
\begin{aligned}
& E(X)=\text { ? } \\
& 1,2, \ldots, i m
\end{aligned}
$$

$X_{i i}=\left\{\begin{array}{lc}1 & y i z_{j} \text { hare save bday } \\ 0 & 0 . w,\end{array}\right.$

$$
\begin{aligned}
& 1 \leqslant i<j \leqslant m \\
& E(X)=\sum_{1 \leq i<j \leqslant m}^{E}=\left(\begin{array}{l}
\left(X_{i j}\right)
\end{array}=\binom{m}{2} \frac{1}{365}\right.
\end{aligned}
$$

$$
\begin{aligned}
& E\left(X_{i j}\right)=P\left(i 8_{j} \text { bes best }\right)=\frac{1}{365}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Pairs with the same birthday } \frac{1}{365} \\
& -365 \frac{1}{365} \cdot \frac{1}{365}=\frac{1}{365}
\end{aligned}
$$

- In a class of m students, on average how many pairs of people have the same birthday (assuming 365 equally likely birthdays)?

Decompose: Indicator events involve pairs of students (i, j) for $i \neq j$ $X_{i j}=1$ iff students i and j have the same birthday

LIE: $\binom{m}{2}$ indicator variables $X_{i j}$
Conquer: $\mathbb{E}\left[X_{i j}\right]=\frac{1}{365}$ so total expectation is $\frac{\binom{m}{2}}{365}=\frac{m(m-1)}{730}$ pairs

Agenda

- Recap
- Linearity of expectation
- LOTUS
- Variance

Linearity of Expectation - Even stronger

Theorem. For any random variables X_{1}, \ldots, X_{n}, and real numbers $a_{1}, \ldots, a_{n} \in \mathbb{R}$,

$$
\mathbb{E}\left[a_{1} X_{1}+\cdots+a_{n} X_{n}\right]=a_{1} \mathbb{E}\left[X_{1}\right]+\cdots+a_{n} \mathbb{E}\left[X_{n}\right] .
$$

Very important: In general, we do not have $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

Linearity is special!

In general $\mathbb{E}[g(X)] \neq g(\mathbb{E}(X))$
E.g., $X=\begin{aligned} & +1 \text { with prob } 1 / 2 \\ & -1 \\ & 1\end{aligned}$

Then: $\mathbb{E}\left[X^{2}\right] \neq \mathbb{E}[X]^{2}$
How DO we compute $\mathbb{E}[g(X)]$?

Expected Value of $g(X)$

Definition. Given a discrete $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value or mean of $g(X)$ is

$$
\mathbb{E}[g(X)]=\sum_{\omega \in \Omega} g(\underline{X(\omega)}) \cdot P(\omega)
$$

or equivalently

$$
\mathbb{E}[g(X)]=\sum_{x \in \Omega_{X}} g(x) \cdot P(X=x)=\sum_{x \in \Omega_{X}} g(x) \cdot p_{X}(x)
$$

Also known as LOTUS: "Law of the unconscious statistician
(nothing special going on in the discrete case)

Example: from concept check

- Toss a die; each side equally likely. X is the number showing
- $Y=X \bmod 4$
- What is $\mathbb{E}[Y]$?

$$
E(x)=1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}+4 \cdot \frac{1}{6}+5 \cdot \frac{1}{6}+6 \cdot \frac{1}{6}
$$

$\operatorname{Pr}(\boldsymbol{\omega})$	$\boldsymbol{\omega}$	\boldsymbol{X}
$1 / 6$	1	1
$1 / 6$	2	2
$1 / 6$	3	3
$1 / 6$	4	4
$1 / 6$	5	5
$1 / 6$	6	6

