CSE 312 Foundations of Computing II

Lecture 9: Linearity of expectation, LOTUS and variance

5/1do.com/3680281

Agenda

- Recap 🖉
- Linearity of expectation
- LOTUS
- Variance

Review Random Variables

Definition. A random variable (RV) for a probability space (Ω, P) is a function $X: \Omega \to \mathbb{R}$.

The set of values that X can take on is its range/support: \mathcal{I}_X

$$\{X = x_i\} = \{\omega \in \Omega \mid X(\omega) = x_i\}$$

Random variables **partition** the sample space.

Review PMF and CDF

Definitions:

For a RV $X: \Omega \to \mathbb{R}$, the probability mass function (pmf) of X specifies, for any real number x, the probability that X = x

$$p_X(x) = P(X = x) = P(\{\omega \in \Omega \mid X(\omega) = x\})$$
$$\sum_{x \in \Omega_X} p_X(x) = 1$$

For a RV $X: \Omega \to \mathbb{R}$, the cumulative distribution function (cdf) of X specifies, for any real number x, the probability that $X \leq x$

$$F_X(x) = P(X \le x)$$

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	1, 2, 3	3
1/6	<mark>1</mark> , 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3 <mark>, 2,</mark> 1	1

Review Expected Value of a Random Variable

Definition. Given a discrete RV $X: \Omega \to \mathbb{R}$, the expectation or expected value or mean of X is $\mathbb{E}[X] = \sum_{x \in \Omega_X} \underline{x} \cdot P(X = x) = \sum_{x \in \Omega_X} x \cdot p_X(x)$ $X \text{ takes value 5 whyere is } E(X) = 5 \cdot \frac{1}{5} + 10 \cdot \frac{4}{5}$ = 9

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

Pr(w)	ω	$X(\boldsymbol{\omega})$	
1/6	1, 2, 3	3	
1/6	1, 3, 2	1	
1/6	2, 1, 3	1	
1/6	2, 3, 1	0	
1/6	3, 1, 2	0	
1/6	3, 2, 1	1	

$$\mathbb{E}[X] = \underline{3} \cdot P(X = 3) + \underline{1} \cdot P(X = 1) + 0 \cdot P(X = 0)$$

$$= P(133) + P(313) + P$$

 $\mathbb{E}[X] = \sum x \cdot P(X = x)$

 $x \in \overline{X(\Omega)}$

Review Expected Value of a Random Variable

Definition. Given a discrete $\mathbb{RV} X: \Omega \to \mathbb{R}$, the **expectation** or **expected value** or **mean** of *X* is

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)$$

or equivalently

$$\mathbb{E}[X] = \sum_{x \in \Omega_X} x \cdot P(X = x) = \sum_{x \in \Omega_X} x \cdot p_X(x)$$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Indicator random variable – 0/1 valued

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- For any event, can define the indicator random variable for that event

 $X_1 = \begin{cases} 1 & \text{if person 1 gets their homework back} \\ 0 & \text{otherwise.} \end{cases}$

Pr(w)	ω	$X(\boldsymbol{\omega})$	Χ ′(ო)
1/6	1, 2, 3	3	1
1/6	1, 3, 2	1	1
1/6	2, 1, 3	1	0
1/6	2, 3, 1	0	0
1/6	3, 1, 2	0	0
1/6	3, 2, 1	1	0

$$P(X_{1} = 1) = \frac{1}{3}$$

$$P(X_{1} = 0) = \frac{2}{3}$$

$$E(X_{1}) = \frac{1}{3} \cdot P(X_{1} = 1)$$

$$+ O \cdot P(X_{1} = 0)$$

$$= P(X_{1} = 1) = \frac{1}{3}$$

$$y_{-} = 3x - S = E(y) = 3E(x) - S$$

Example – Coin Tosses – The brute force method

We flip n coins, each one heads with probability p, Z is the number of heads, what is $\mathbb{E}[Z]$?

 $\mathbb{E}[Z] = \sum_{k=0}^{n} k \cdot P(Z = k) = \sum_{k=0}^{n} k \cdot \binom{n}{k} p^{k} (1-p)^{n-k}$ = $\sum_{k=0}^{n} k \cdot \frac{n!}{k! (n-k)!} p^{k} (1-p)^{n-k} = \sum_{k=1}^{n} \frac{n!}{(k-1)! (n-k)!} p^{k} (1-p)^{n-k}$ = $np \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)! (n-k)!} p^{k-1} (1-p)^{n-k}$ Can we

This Photo by Unknown Author is licensed under <u>CC BY-NC</u>

$$= np \sum_{k=0}^{n-1} \frac{(n-1)!}{k! (n-1-k)!} p^k (1-p)^{(n-1)-k}$$

Can we solve it more elegantly, please?

$$= np \sum_{k=0}^{n-1} \binom{n-1}{k} p^k (1-p)^{(n-1)-k} = np (p + (1-p))^{n-1} = np \cdot 1 = np$$

11

Example – Coin Tosses

We flip n coins, each toss independent, comes up heads with probability pZ is the number of heads, what is $\mathbb{E}[Z]$?

 $X_i = \begin{cases} 1, \ i^{\text{th}} \text{ coin flip is heads} \\ 0, \ i^{\text{th}} \text{ coin flip is tails.} \end{cases}$

Outcomes	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	Z
TTT	0	0	0	0
ТТН	0	0	1	1
ТНТ	0	1	0	1
тнн	0	1	1	2
НТТ	1	0	0	1
нтн	1	0	1	2
HHT	1	1	0	2
ннн	1	1	1	3

Fact. $Z = X_1 + \dots + X_n$

 $E(Z) = E(X, + X_{2} + X_{3})$ = $E(X, + E(X_{3}) + E(X_{3}) + E(X_{3})$ = P + P + P = 3P $= 1 \cdot P(X_{i}=1)$ + $C \cdot P(X_{i}=0)$ 12

Example – Coin Tosses

We flip *n* coins, each toss independent, comes up heads with probability *p Z* is the number of heads, what is $\mathbb{E}[Z]$?

- $X_i = \begin{cases} 1, \ i^{\text{th}} \text{ coin flip is heads} \\ 0, \ i^{\text{th}} \text{ coin flip is tails.} \end{cases}$

Fact.
$$Z = X_1 + \dots + X_n$$

Linearity of Expectation: $\mathbb{E}[Z] = \mathbb{E}[X_1 + \dots + X_n] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n] = n \cdot p$ $P(X_i = 1) = p$ $P(X_i = 0) = 1 - p$ $\mathbb{E}[X_i] = p \cdot 1 + (1 - p) \cdot 0 = p$

Using LOE to compute complicated expectations

Often boils down to the following three steps:

<u>Decompose</u>: Finding the right way to decompose the random variable into sum of simple random variables

X) = <

 $X = X_1 + \dots + X_n$

• LOE: Apply linearity of expectation.

 $\mathbb{E}[X] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n].$

<u>Conquer</u>: Compute the expectation of each X_i

Often X_i are indicator (0/1) random variables.

Indicator random variables – 0/1 valued

For any event A, can define the indicator random variable X_A for A $X_A = \begin{cases} 1 & \text{if event } A \text{ occurs} \\ 0 & \text{if event } A \text{ does not occur} \end{cases}$ $P(X_A = 1) = P(A)$ $P(X_A = 0) = 1 - P(A)$ 0.55 0.45 0 0.2 \mathbb{R} 0.3 $E(X_A) = P(X_A = 1) = P(A)$

- Class with *n* students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

What is $\mathbb{E}[X]$?

 $E(X) = \sum_{k=0}^{\infty} k P(X=k)$

Pr(w)	ω	$X(\boldsymbol{\omega})$	
1/6	1, 2, 3	3	
1/6	1, 3, 2	1	
1/6	2, 1, 3	1	
1/6	2, 3, 1	0	
1/6	3, 1, 2	0	
1/6	3, 2, 1	1	

- Class with *n* students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

What is $\mathbb{E}[X]$? Use linearity of expectation!

Pr(w)	ω	X(w)
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

<u>Decompose:</u> Find the right way to decompose the random variable into sum of simple random variables

$$X = X_1 + \dots + X_n$$

LOE: Apply linearity of expectation. $\mathbb{E}[X] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n].$

<u>Conquer</u>: Compute the expectation of each X_i and sum!

- Class with *n* students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

What is $\mathbb{E}[X]$? Use linearity of expectation!

			Decompose: X:= } if shdent i get their ack
Pr(w)	ω	$X(\boldsymbol{\omega})$	τ
1/6	<mark>1</mark> , 2, 3	3	$X = X_1 + X_2 + \dots + X_n$
1/6	<mark>1</mark> , 3, 2	1	
1/6	2, 1, 3	1	
1/6	2, 3, 1	0	$IOF: F(X) = F(X) + E(X_{n}) + U + E(X_{n})$
1/6	3, 1, 2	0	
1/6	3, 2, 1	1	LOE: $E(X) = E(X_1) + E(X_2) + E(X_n)$ Conquer: $= n \cdot \frac{1}{n} = 1$
E()	X:)	= Pr	student i act his = th their due back = th

- Class with *n* students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW What is $\mathbb{E}[X]$? Use linearity of expectation!

Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

<u>Decompose</u>: What is X_i ?

 $X_{i} = 1 \text{ iff } i^{th} \text{ student gets own HW back; 0 o.w.}$ $LOE: \mathbb{E}[X] = \mathbb{E}[X_{1}] + \dots + \mathbb{E}[X_{n}]$ Conquer: $\mathbb{E}[X_{i}] = \frac{1}{n}$ Therefore, $\mathbb{E}[X] = n \cdot \frac{1}{n} = 1$ 22

• In a class of *m* students, on average how many pairs of people have the same birthday (assuming 365 equally likely birthdays)?

Decompose: Indicator events involve **pairs** of students (i, j) for $i \neq j$ $X_{ij} = 1$ iff students *i* and *j* have the same birthday

LOE:
$$\binom{m}{2}$$
 indicator variables X_{ij}
Conquer: $\mathbb{E}[X_{ij}] = \frac{1}{365}$ so total expectation is $\frac{\binom{m}{2}}{365} = \frac{m(m-1)}{730}$ pairs

Agenda

- Recap
- Linearity of expectation
- LOTUS
- Variance

Linearity of Expectation – Even stronger

Theorem. For any random variables $X_1, ..., X_n$, and real numbers $a_1, ..., a_n \in \mathbb{R}$, $\mathbb{E}[a_1X_1 + \cdots + a_nX_n] = a_1\mathbb{E}[X_1] + \cdots + a_n\mathbb{E}[X_n].$

Very important: In general, we do <u>not</u> have $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

How DO we compute $\mathbb{E}[g(X)]$?

Expected Value of g(X)

Definition. Given a discrete RV $X: \Omega \to \mathbb{R}$, the expectation or expected value or mean of g(X) is $\mathbb{E}[g(X)] = \sum_{\omega \in \Omega} g(X(\omega)) \cdot P(\omega)$ $\mathbb{E}[\chi) = \sum_{\omega \in \Omega} g(X) \cdot P(X = x) = \sum_{x \in \Omega_X} g(x) \cdot p_X(x)$

Also known as LOTUS: "Law of the unconscious statistician

(nothing special going on in the discrete case)

Example: from concept check

$$\mathbb{E}[g(X)] = \sum_{x \in \Omega_X} g(x) \cdot P(X = x)$$

• Toss a die; each side equally likely. *X* is the number showing

•
$$Y = X \mod 4$$

• What is $\mathbb{E}[Y]$?

$$E(X) = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6}$$

Pr(w)	ω	X
1/6	1	1
1/6	2	2
1/6	3	3
1/6	4	4
1/6	5	5
1/6	6	6