

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

sudexn pəұวə⿰!pu

sчdexŋ рәұэәл!ฮ


| Directed Graph Terminology |
| :---: |
| When $(u, v)$ is an edge of the graph $G$ with directed edges, $u$ is adjacent to $v$ and $v$ is said to be adjacent from $u$. The vertex called the initial vertex of $(u, v)$, and $v$ is called the termina end vertex of $(u, v)$. The initial vertex and terminal vertex of are the same. |
| $\diamond$ In a graph with directed edges the in-degree of a vertex $v$, deno $\operatorname{deg}^{-}(v)$, is the number of edges with $v$ as their terminal vert out-degree of $v$, denoted by deg ${ }^{+}(v)$, is the number of edge as their initial vertex. |
| $\diamond$ Theorem: Let $G=(V, E)$ be a graph with directed edges. Then $\sum_{v \in V} \operatorname{deg}^{-}(v)=\sum_{v \in V} \operatorname{deg}^{+}(v)=\|E\|$ |






