Discrete Structures

Integers and Division

Chapter 2, Sections 2.3 - 2.5

Dieter Fox

Integers

Let a, b, and c be integers, $a \neq 0$.

 $\Diamond a \mid b$: a divides b if there is an integer c such that b = ac. When a divides b we say that a is a factor of b and that b is a multiple of a.

♦ Theorem:

- 1. if $a \mid b$ and $a \mid c$, then $a \mid (b+c)$;
- 2. if $a \mid b$, then $a \mid bc$;
- 3. if $a \mid b$ and $b \mid c$, then $a \mid c$.
- \diamondsuit **Prime:** A positive integer p greater than 1 is called prime if the only positive factors of p are 1 and p. A positive integer that is greater than 1 and is not prime is called composite.
- Fundamental Theorem of Arithmetic: Every positive integer can be written uniquely as the product of primes, where the prime factors are written in order of increasing size.

Division algorithm

- \diamondsuit **Division algorithm:** Let a be an integer and d a poisitive integer. Then there are unique integers q and r, with $0 \le r < d$, such that a = dq + r.
- \diamondsuit In the division algorithm, d is called the divisor, a is called the dividend, q is called the quotient, and r is called the remainder.

gcd and lcm

- \diamondsuit **gcd**(a,b): Let a and b be integers, not both zero. The largest integer d such that $d \mid a$ and $d \mid b$ is called the greatest common divisor of a and b.
- \diamondsuit The integers a and b are relatively prime if gcd(a,b)=1.
- \diamondsuit The integers a_1, a_2, \ldots, a_n are pairwise relatively prime if $gcd(a_i, a_j) = 1$ whenever $1 \le i < j \le n$.
- \diamondsuit **lcm**(a,b): The least common multiple of the positive integers a and b is the smallest positive integer that is divisible by both a and b.
- \diamondsuit Theorem: Let a and b be positive integers. Then $ab = \gcd(a,b) \cdot \operatorname{lcm}(a,b)$.

Modular Arithmetic

- \Diamond $a \mod m$: Let a be an integers and m be a positive integer. We denote by $a \mod m$ the remainder when a is divided by m.
- $\Rightarrow a \equiv b \pmod{m}$ If a and b are integers and m is a positive integer, then a is congruent to b modulo m if m divides a b.
- \diamondsuit Theorem: Let m be a positive integer. The integers a and b are congruent modulo m if and only if there is an integer k such that a = b + km.
- \diamondsuit Theorem: Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$.

Euclidean Algorithm

 \diamondsuit Lemma: Let a=bq+r, where $a,\,b,\,q$, and r are integers. Then $\gcd(a,b)=\gcd(b,r)$.