Discrete Structures

Logic

Chapter 1, Sections 1.1–1.3

Dieter Fox

Outline

- ♦ Propositional Logic
- Propositional Equivalences
- ♦ First-order Logic

Propositional Logic

Let p and q be propositions.

- \diamondsuit **Negation** $\neg p$ The statement "It is not the case that p." is true, whenever p is false and is false otherwise.
- \diamondsuit Conjunction $p \land q$ The statement "p and q" is true when both p and q are true and is false otherwise.
- \diamondsuit **Disjunction** $p \lor q$ The statement "p or q" is false when both p and q are false and is true otherwise.
- \diamondsuit **Exclusive or** $p \oplus q$ The *exclusive or* of p and q is true when exactly one of p and q is true and is false otherwise.

Propositional Logic

Let p and q be propositions.

- \diamondsuit Implication $p \to q$ The implication $p \to q$ is false when p is true and q is false and is true otherwise. p is called the hypothesis (antecedent, premise) and q is called the conclusion (consequence).
 - "if p, then q" "p implies q" "p only if q" "p is sufficient for q" "q is necessary for p"
 - $q \rightarrow p$ is called the converse of $p \rightarrow q$
 - $\neg q \rightarrow \neg p$ is called the contrapositive of $p \rightarrow q$
- \diamondsuit **Biconditional** $p \leftrightarrow q$ The *biconditional* $p \leftrightarrow q$ is true whenever p and q have the same truth values and is false otherwise.

Translating English Sentences

♦ You can access the Internet from campus only if you are a computer science major or you are not a freshman.

♦ You cannot ride the roller coaster is you are under 4 feet tall unless you are older than 16 years old.

Logical Equivalences

- ♦ Tautology A compound statement that is always true.
- ♦ Contradiction A compound statement that is always false.
- Contingency A compound statement that is neither a tautology nor a contradiction.
- \diamondsuit Logical equivalence $p \Leftrightarrow q$ Propositions p and q are called *logically* equivalent if $p \leftrightarrow q$ is a tautology.

Logical Equivalences

$p \wedge T \Leftrightarrow p$	Identity laws
$p \lor F \Leftrightarrow p$	
$p \lor T \Leftrightarrow T$	Domination laws
$p \wedge F \Leftrightarrow F$	
$p \lor p \Leftrightarrow p$	Idempotent laws
$p \land p \Leftrightarrow p$	
$\neg(\neg p) \Leftrightarrow p$	Double negation law
$p \lor q \Leftrightarrow q \lor p$	Commutative laws
$p \wedge q \Leftrightarrow q \wedge p$	
$(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$	Associative laws
$(p \land q) \land r \Leftrightarrow p \land (q \land r)$	
$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$	Distributive laws
$p \wedge (q \vee r) \Leftrightarrow (p \wedge q) \vee (p \wedge r)$	
$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$	De Morgan's laws
$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$	

First-order Logic

 \diamondsuit Universal quantifier \forall : The *universal quantification* of P(x) is the proposition "P(x) is true for all values of x in the universe of discourse."

 \diamondsuit **Existential quantifier** \exists : The *existential quantification* of P(x) is the proposition "There exists an element x in the universe of discourse such that P(x) is true."