Kelations
♦ Let <i>A</i> and <i>B</i> be sets. A binary relation from <i>A</i> to <i>B</i> is a subset of $A \times B$. If $(a, b) \in R$, we write <i>aRb</i> and say <i>a</i> is related to <i>b</i> by <i>R</i> .
\diamond A relation on the set A is a relation from A to A.
\diamond A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.
\diamond A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$, for $a, b \in A$.
\diamond A relation R on a set A such that $(a, b) \in R$ and $(b, a) \in R$ only if $a = b$, for $a, b \in A$, is called antisymmetric.
\diamond A relation <i>R</i> on a set <i>A</i> is called transitive if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for $a, b \in A$.
D. Fox, CSE-321 Chapter 6, Sections 6.1 - 6.5 0-1
Combining Relations
\diamond Let R be a relation from a set A to a set B and S be a relation from B
ordered pairs (a, c) , where $a \in A$, $c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$.
We denote the composite of R and S by $S \circ R$.
\diamond Let R be a relation on the set A . The powers R^n , $n = 1, 2, 3,,$ are defined inductively by $R^1 = R$ and $R^{n+1} = R^n \circ R$.
♦ Theorem : The relation <i>R</i> on a set <i>A</i> is transitive if and only if $R^n \subset R$ for $n = 1, 2, 3$

Chapter 6, Sections 6.1 - 6.5 0-2

♦ Let *P* be a property of relations (transitivity, refexivity, symmetry). A relation *S* is losure of *R* w.r.t. *P* if and only if *S* has property *P*, *S* contains *R*, and *S* is a subset of every relation with property *P* containing *R*.

D. Fox, CSE-321

Chapter 6, Sections 6.1 - 6.5

0-4

Connectivity

- ♦ Let *R* be a relation on a set *A*. The **connectivity relation** R^* consists of pairs (a, b) such that there is a path between *a* and *b* in *R*.
- ♦ **Theorem:** The transitive closure of a relation R equals the connectivity relation R^* .

- A directed graph, or digraph, consists of a set V of vertices (or nodes) together with a set E of ordered pairs of elements of V called edges (or arcs).
- ♦ A path from *a* to *b* in the directed graph *G* is a sequence of one or more edges (x₀, x₁), (x₁, x₂), ... (x_{n-1}, x_n) in *G*, where x₀ = *a* and x_n = *b*. This path is denoted by x₀, x₁,..., x_n and has length *n*. A path that begins and ends at the same vertex is called a circuit or cycle.
- ♦ There is a path from *a* to *b* in a relation *R* is there is a sequence of elements $a, x_1, x_2, \ldots, x_{n-1}, b$ with $(a, x_1) \in R, (x_1, x_2) \in R, \ldots, (x_{n-1}, b) \in R$.
- ♦ **Theorem:** Let *R* be a relation on a set *A*. There is a path of length *n* from *a* to *b* if and only if $(a, b) \in \mathbb{R}^n$.

D. Fox, CSE-321

Chapter 6, Sections 6.1 - 6.5 0-5

Partitions

- We want to use relations to form partitions of a group of students. Each member of a subgroup is related to all other members of the subgroup, but to none of the members of the other subgroups.
- \diamond Use the following relations:
- Partition by the relation "older than"
- Partition by the relation "partners on some project with" Partition by the relation "comes from same hometown as"
- $\diamond~$ Which of the groups will succeed in forming a partition? Why?

D. Fox, CSE-321

- \diamond A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive. Two elements that are related by an equivalence relation are called equivalent.
- \diamond Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A is called the equivalence class of aIf $b \in [a]_R$ then b is representative of this equivalence class $[a]_R$: equivalence class of a w.r.t. R.

 \diamond **Theorem:** Let *R* be an equivalence relation on a set *S*. Then the

 $A_i \cap A_j = \emptyset$, when $i \neq j$

 $\bigcup_{i\in I} A_i = S$

 $A_i
eq \emptyset$ for $i \in I$

equivalence classes of *R* form a partition of *S*. Conversely, given a partition $\{A_i \mid i \in I\}$ of the set *S*, there is an equivalence relation *R* that

has the sets $A_i, i \in I$, as its equivalence classes.

 \diamond **Theorem:** Let *R* be an equivalence relation on a set *A*. The following statements are equivalent:

(1) aRb

(2) [a] = [b]

(3) $[a] \cap [b] \neq \emptyset$

D. Fox, CSE-321

Chapter 6, Sections 6.1 - 6.5 0-8

D. Fox, CSE-321

Chapter 6, Sections 6.1 - 6.5 6-0

Equivalence Relations and Partitions

 \diamond A partition of a set S is a collection of disjoint nonempty subsets $A_i, i \in I$

(where I is an index set) of S that have S as their union: