
Propositional Equivalences

p ∧ T ⇔ p Identity laws
p ∨ F ⇔ p

p ∨ T ⇔ T Domination laws
p ∧ F ⇔ F

p ∨ p ⇔ p Idempotent laws
p ∧ p ⇔ p

¬(¬p) ⇔ p Double negation law
p ∨ q ⇔ q ∨ p Commutative laws
p ∧ q ⇔ q ∧ p

(p ∨ q) ∨ r ⇔ p ∨ (q ∨ r) Associative laws
(p ∧ q) ∧ r ⇔ p ∧ (q ∧ r)
p ∨ (q ∧ r) ⇔ (p ∨ q) ∧ (p ∨ r) Distributive laws
p ∧ (q ∨ r) ⇔ (p ∧ q) ∨ (p ∧ r)
¬(p ∧ q) ⇔ ¬p ∨ ¬q De Morgan’s laws
¬(p ∨ q) ⇔ ¬p ∧ ¬q

Rules of Inference

p
p∨q Addition

p∧q
p Simplification

p,q
p∧q Conjunction

p,p→q
q Modus ponens

¬q,p→q
¬p Modus tollens

p→q,q→r
p→r Hypothetical syllogism

p∨q,¬p
q Disjunctive syllogism

∀xP (x)

P (c) if c∈U
Universal instantiation

P (c) for an arbitraryc∈U
∀xP (x) Universal generalization

∃xP (x)

P (c) for somec∈U
Existential instantiation

P (c) for somec∈U
∃xP (x) Existential generalization

Sets

• P(S): Thepower setof S is the set of all subsets of the setS.

• A×B: TheCartesian product of A andB is the set of all ordered pairs(a, b) whereaεA andbεB.

• A1×A2×. . .×An: TheCartesian productof the setsA1, A2, . . . , An is the set of orderedn−tuples(a1, a2, . . . , an),
whereai belongs toAi for i = 1, 2, . . . , n.

Functions

• f : A → B: A function from A to B is an assignment of exactly one element ofB to each element ofA.

• A is thedomain of f andB is thecodomainof f .
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• If f(a) = b, we say thatb is theimageof a anda is apre-imageof b. Therangeof f i the set of all images of
elements ofA.

• Injection: Functionf is said to beone-to-one, if and only if f(x) = f(y) implies thatx = y for all x andy in
the domain off .

• Surjection: Functionf is said to beonto / surjective, if and only if for every elementbεB there is an element
aεA with f(a) = b.

• Bijection: Functionf is aone-to-one correspondence, or bijection, if it is both one-to-one and onto.

• Inverse function: Let f be a one-to-one correspondence fromA to B. The inverse function of f assigns to
an elementb in B the unique elementa in A such thatf(a) = b. The inverse function off is denoted byf−1.
Hence,f−1(b) = a whenf(a) = b.

• f ◦ g: g : A → B, f : B → C. Thecompositionof the functionsf andg is defined by(f ◦ g)(a) = f(g(a))

Integers

• Let a, b, andc be integers,a 6= 0.

• a | b : a divides b if there is an integerc such thatb = ac. Whena dividesb we say thata is a factor of b and
thatb is amultiple of a.

• Prime: A positive integerp greater than 1 is called prime if the only positive factors ofp are 1 andp. A positive
integer that is greater than 1 and is not prime is calledcomposite.

• Fundamental Theorem of Arithmetic: Every positive integer can be written uniquely as the product of primes,
where the prime factors are written in order of increasing size.

• Division algorithm: Let a be an integer andd a poisitive integer. Then there are unique integersq andr, with
0 ≤ r < d, such thata = dq + r.

• gcd(a, b): Let a andb be integers, not both zero. The largest integerd such thatd | a andd | b is called the
greatest common divisorof a andb.

• The integersa andb arerelatively prime if gcd(a, b) = 1.

• a ≡ b (mod m) If a andb are integers andm is a positive integer, thena is congruent to b modulo m if m
dividesa− b.

• Theorem 1: Let m be a positive integer. The integersa andb are congruent modulom if and only if there is an
integerk such thata = b + km.

• Theorem 2: Let m be a positive integer. Ifa ≡ b (modm) andc ≡ d (modm), thena + c ≡ b + d (modm))
andac ≡ bd (modm).

• Lemma 1: Let a = bq + r, wherea, b, q, andr are integers. Then gcd(a, b) = gcd(b, r).

Counting Principles

• Pascal’s Identity: Let n andk be positive integers withn ≥ k. ThenC(n + 1, k) = C(n, k − 1) + C(n, k)
• Binomial Theorem: Let x andy be variables, and letn be a positive integer. Then

(x + y)n =
n∑

j=0

C(n, j)xn−jyj

Probability Theory

• Let S be the sample space of an experiment with a finite or countable number of outcomes. We assignproba-
bility p(s) to each outcomes. The following two conditions have to be met:
(i) 0 ≤ p(s) ≤ 1 for eachsεS
(ii)

∑
sεS p(s) = 1

• Theprobability of the event E is the sum of the probabilities of the outcomes inE. That is,p(E) =
∑

sεE p(s).
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• Let E andF be events withp(F ) > 0. Theconditional probability of E givenF is defined

p(E | F ) =
p(E ∩ F )

p(F )
.

• The eventsE andF are said to beindependentif
p(E ∩ F ) = p(E)P (F ).

• Bernoulli Trial : Experiment with only two possible outcomes: success or failure.

• Probability of k successes inn independent Bernoulli trials with probability of successp and probability of
failure q = 1− p, is C(n, k)pkqn−k.

• A random variable is a function from the sample space of an experiment to the set of real numbers.

• Theexpected value(or expectation) of a random
E(X) =

∑
sεS

p(s)X(s).

• Theorem 3: If X andY are random variables on a spaceS, thenE(X + Y ) = E(X) + E(Y ).Furthermore, if
Xi, i = 1, 2, . . . , n, with n a positive integer, are random variables onS, andX = X1 + X2 + . . . + Xn, then
E(X) = E(X1) + E(X2) + . . . + E(Xn).

• The random variablesX andY on a sample spaceS areindependentif for all real numbersr1 andr2 p(X(s) =
r1 andY (s) = r2) = p(X(s) = r1)ṗ(Y (s) = r2).

• Theorem 4: If X andY are independent random variables on a spaceS, thenE(XY ) = E(X)E(Y ).

• Let X be random variables on a sample spaceS . Thevarianceof X, denoted byV (X), is
V (X) =

∑
sεS

(X(s)− E(X))2p(s).

• Theorem 5: If X is a random variable on a spaceS, thenV (X) = E(X2)− E(X)2.

Relations

• Let A andB be sets. Abinary relation from A to B is a subset ofA× B. If (a, b)εR, we writeaRb and say
a is related to b by R.

• Let R be a relation from a setA to a setB andS be a relation fromB to a setC. Thecompositeof R andS is
the relation consisting of ordered pairs(a, c), whereaεA, cεC, and for which there exists an elementbεB such
that(a, b)εR and(b, c)εS. We denote the composite ofR andS by S ◦R.

• Let R be a relation on the setA. Thepowers Rn, n = 1, 2, 3, . . ., are defined inductively byR1 = R and
Rn+1 = Rn ◦R.

• Let P be a property of relations (e.g. transitivity, refexivity, symmetry). A relationS is losure ofR w.r.t. P if
and only ifS has propertyP , S containsR, andS is a subset of every relation with propertyP containingR.

• There is apath from a to b in a relationR is there is a sequence of elementsa, x1, x2, . . . xn−1, b with (a, x1) ∈
R, (x1, x2) ∈ R, . . . , (xn−1, b) ∈ R.

• Theorem 6: Let R be a relation on a setA. There is a path of lengthn from a to b if and only if (a, b) ∈ Rn.

• Let R be a relation on a setA. Theconnectivity relation R∗ consists of pairs(a, b) such that there is a path
betweena andb in R.

• Theorem 7: The transitive closure of a relationR equals the connectivity relationR∗.

• A relation on a setA is called anequivalence relationif it is reflexive, symmetric, and transitive. Two elements
that are related by an equivalence relation are called equivalent.

• Let R be an equivalence relation on a setA. The set of all elements that are related to an elementa of A is
called theequivalence classof a. [a]R: equivalence class ofa w.r.t. R.If b ∈ [a]R thenb is representativeof
this equivalence class.
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• Theorem 8: Let R be an equivalence relation on a setA. The following statements are equivalent:
(1) aRb
(2) [a] = [b]
(3) [a] ∩ [b] 6= ∅

• A partition of a setS is a collection of disjoint nonempty subsetsAi, i ∈ I (whereI is an index set) ofS that
haveS as their union:Ai 6= ∅ for i ∈ IAi ∩Aj = ∅, wheni 6= j

⋃
i∈I Ai = S

• Theorem 9: Let R be an equivalence relation on a setS. Then the equivalence classes ofR form a partition of
S. Conversely, given a partition{Ai | i ∈ I} of the setS, there is an equivalence relationR that has the sets
Ai, i ∈ I, as its equivalence classes.

Graphs

• Thedegreeof a vertex in an undirected graph is the number of edges incident with it, except that a loop at a
vertex contributes twice to the degree of that vertex. The degree of the vertexv is denoted by deg(v).

• The Handshaking Theorem: Let G = (V,E) be an undirected graph withe edges. Then2e =
∑

v∈V deg(v).

• Theorem 10: An undirected graph has an even number of vertices of odd degree.

• In a graph with directed edges thein-degreeof a vertexv, denoted by deg−(v), is the number of edges withv
as their terminal vertex. Theout-degreeof v, denoted by deg+(v), is the number of edges withv as their initial
vertex.

• Theorem 11: Let G = (V,E) be a graph with directed edges. Then
∑

v∈V deg−(v) =
∑

v∈V deg+(v) = |E|.
• A simple graph isG is calledbipartite if its vertexV can be partitioned into two disjoint nonempty setsV1 and

V2 such that every edge in the graph connects a vertex inV1 and a vertex inV2 (so that no edge inG connects
either two vertices inV1 or two vertices inV2.

• The simple graphsG1 = (V1, E1) andG2 = (V2, E2) areisomorphic if there is a one-to-one and onto function
f from V1 to V2 with the property thata andb are adjacent inG1 if and only if f(a) andf(b) are adjacent inG2,
for all a andb in V1. Such a functionf is called anisomorphism.
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