Propositional Equivalences

$p \wedge T \Leftrightarrow p$	Identity laws
$p \vee F \Leftrightarrow p$	Domination laws
$p \vee T \Leftrightarrow T$	Idempotent laws
$p \wedge F \Leftrightarrow F$	Double negation law
$p \vee p \Leftrightarrow p$	Commutative laws
$p \wedge p \Leftrightarrow p$	
$\neg(\neg p) \Leftrightarrow p$	Associative laws
$p \vee q \Leftrightarrow q \vee p$	
$p \wedge q \Leftrightarrow q \wedge p$	Distributive laws
$(p \vee q) \vee r \Leftrightarrow p \vee(q \vee r)$	De Morgan's laws
$(p \wedge q) \wedge r \Leftrightarrow p \wedge(q \wedge r)$	
$p \vee(q \wedge r) \Leftrightarrow(p \vee q) \wedge(p \vee r)$	
$p \wedge(q \vee r) \Leftrightarrow(p \wedge q) \vee(p \wedge r)$	
$\neg(p \wedge q) \Leftrightarrow \neg p \vee \neg q$	
$\neg(p \vee q) \Leftrightarrow \neg p \wedge \neg q$	

Rules of Inference

$\frac{p}{p \vee q}$	Addition
$\frac{p \wedge q}{p}$	Simplification
$\frac{p, q}{p \wedge q}$	Conjunction
$\frac{p, p \rightarrow q}{q}$	Modus ponens
$\frac{\neg q, p \rightarrow q}{\sim p}$	Modus tollens
$\frac{p \rightarrow q, q \rightarrow r}{p \rightarrow r}$	Hypothetical syllogism
$\frac{p \vee q, \neg p}{q}$	Disjunctive syllogism
$\frac{\forall x P(x)}{P(c) \text { if } c \in U}$	Universal instantiation
$\frac{P(c) \text { for an arbitrary } c \in U}{\forall x P(x)}$	Universal generalization
$\frac{\exists x P(x)}{P(c) \text { for some } c \in U}$	Existential instantiation
$\frac{P(c) \text { for some } c \in U}{\exists x P(x)}$	Existential generalization

Sets

- $\mathcal{P}(S)$: The power set of S is the set of all subsets of the set S.
- $A \times B$: The Cartesian product of A and B is the set of all ordered pairs (a, b) where $a \epsilon A$ and $b \in B$.
- $A_{1} \times A_{2} \times \ldots \times A_{n}$: The Cartesian product of the sets $A_{1}, A_{2}, \ldots, A_{n}$ is the set of ordered n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, where a_{i} belongs to A_{i} for $i=1,2, \ldots, n$.

Functions

- $f: A \rightarrow B$: A function from A to B is an assignment of exactly one element of B to each element of A.
- A is the domain of f and B is the codomain of f.
- If $f(a)=b$, we say that b is the image of a and a is a pre-image of b. The range of f i the set of all images of elements of A.
- Injection: Function f is said to be one-to-one, if and only if $f(x)=f(y)$ implies that $x=y$ for all x and y in the domain of f.
- Surjection: Function f is said to be onto / surjective, if and only if for every element $b \in B$ there is an element $a \in A$ with $f(a)=b$.
- Bijection: Function f is a one-to-one correspondence, or bijection, if it is both one-to-one and onto.
- Inverse function: Let f be a one-to-one correspondence from A to B. The inverse function of f assigns to an element b in B the unique element a in A such that $f(a)=b$. The inverse function of f is denoted by $f^{-} 1$. Hence, $f^{-} 1(b)=a$ when $f(a)=b$.
- $f \circ g: g: A \rightarrow B, f: B \rightarrow C$. The composition of the functions f and g is defined by $(f \circ g)(a)=f(g(a))$

Integers

- Let a, b, and c be integers, $a \neq 0$.
- $a \mid b: a$ divides b if there is an integer c such that $b=a c$. When a divides b we say that a is a factor of b and that b is a multiple of a.
- Prime: A positive integer p greater than 1 is called prime if the only positive factors of p are 1 and p. A positive integer that is greater than 1 and is not prime is called composite.
- Fundamental Theorem of Arithmetic: Every positive integer can be written uniquely as the product of primes, where the prime factors are written in order of increasing size.
- Division algorithm: Let a be an integer and d a poisitive integer. Then there are unique integers q and r, with $0 \leq r<d$, such that $a=d q+r$.
- $\operatorname{gcd}(a, b)$: Let a and b be integers, not both zero. The largest integer d such that $d \mid a$ and $d \mid b$ is called the greatest common divisor of a and b.
- The integers a and b are relatively prime if $\operatorname{gcd}(a, b)=1$.
- $a \equiv b(\boldsymbol{\operatorname { m o d }} m)$ If a and b are integers and m is a positive integer, then a is congruent to b modulo m if m divides $a-b$.
- Theorem 1: Let m be a positive integer. The integers a and b are congruent modulo m if and only if there is an integer k such that $a=b+k m$.
- Theorem 2: Let m be a positive integer. If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a+c \equiv b+d(\bmod m))$ and $a c \equiv b d(\bmod m)$.
- Lemma 1: Let $a=b q+r$, where a, b, q, and r are integers. Then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

Counting Principles

- Pascal's Identity: Let n and k be positive integers with $n \geq k$. Then $C(n+1, k)=C(n, k-1)+C(n, k)$
- Binomial Theorem: Let x and y be variables, and let n be a positive integer. Then

$$
(x+y)^{n}=\sum_{j=0}^{n} C(n, j) x^{n-j} y^{j}
$$

Probability Theory

- Let S be the sample space of an experiment with a finite or countable number of outcomes. We assign probability $p(s)$ to each outcome s. The following two conditions have to be met:
(i) $0 \leq p(s) \leq 1$ for each $s \epsilon S$
(ii) $\sum_{s \epsilon S} p(s)=1$
- The probability of the event E is the sum of the probabilities of the outcomes in E. That is, $p(E)=\sum_{s \epsilon E} p(s)$.
- Let E and F be events with $p(F)>0$. The conditional probability of E given F is defined

$$
p(E \mid F)=\frac{p(E \cap F)}{p(F)}
$$

- The events E and F are said to be independent if

$$
p(E \cap F)=p(E) P(F)
$$

- Bernoulli Trial: Experiment with only two possible outcomes: success or failure.
- Probability of k successes in n independent Bernoulli trials with probability of success p and probability of failure $q=1-p$, is $C(n, k) p^{k} q^{n-k}$.
- A random variable is a function from the sample space of an experiment to the set of real numbers.
- The expected value (or expectation) of a random

$$
E(X)=\sum_{s \epsilon S} p(s) X(s) .
$$

- Theorem 3: If X and Y are random variables on a space S, then $E(X+Y)=E(X)+E(Y)$.Furthermore, if $X_{i}, i=1,2, \ldots, n$, with n a positive integer, are random variables on S, and $X=X_{1}+X_{2}+\ldots+X_{n}$, then $E(X)=E\left(X_{1}\right)+E\left(X_{2}\right)+\ldots+E\left(X_{n}\right)$.
- The random variables X and Y on a sample space S are independent if for all real numbers r_{1} and $r_{2} p(X(s)=$ r_{1} and $\left.Y(s)=r_{2}\right)=p\left(X(s)=r_{1}\right) \dot{p}\left(Y(s)=r_{2}\right)$.
- Theorem 4: If X and Y are independent random variables on a space S, then $E(X Y)=E(X) E(Y)$.
- Let X be random variables on a sample space S. The variance of X, denoted by $V(X)$, is

$$
V(X)=\sum_{s \in S}(X(s)-E(X))^{2} p(s)
$$

- Theorem 5: If X is a random variable on a space S, then $V(X)=E\left(X^{2}\right)-E(X)^{2}$.

Relations

- Let A and B be sets. A binary relation from A to B is a subset of $A \times B$. If $(a, b) \epsilon R$, we write $a R b$ and say a is related to b by R.
- Let R be a relation from a set A to a set B and S be a relation from B to a set C. The composite of R and S is the relation consisting of ordered pairs (a, c), where $a \in A, c \epsilon C$, and for which there exists an element $b \in B$ such that $(a, b) \epsilon R$ and $(b, c) \epsilon S$. We denote the composite of R and S by $S \circ R$.
- Let R be a relation on the set A. The powers $R^{n}, n=1,2,3, \ldots$, are defined inductively by $R^{1}=R$ and $R^{n+1}=R^{n} \circ R$.
- Let P be a property of relations (e.g. transitivity, refexivity, symmetry). A relation S is losure of R w.r.t. P if and only if S has property P, S contains R, and S is a subset of every relation with property P containing R.
- There is a path from a to b in a relation R is there is a sequence of elements $a, x_{1}, x_{2}, \ldots x_{n-1}, b$ with $\left(a, x_{1}\right) \in$ $R,\left(x_{1}, x_{2}\right) \in R, \ldots,\left(x_{n-1}, b\right) \in R$.
- Theorem 6: Let R be a relation on a set A. There is a path of length n from a to b if and only if $(a, b) \in R^{n}$.
- Let R be a relation on a set A. The connectivity relation R^{*} consists of pairs (a, b) such that there is a path between a and b in R.
- Theorem 7: The transitive closure of a relation R equals the connectivity relation R^{*}.
- A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive. Two elements that are related by an equivalence relation are called equivalent.
- Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A is called the equivalence class of $a .[a]_{R}$: equivalence class of a w.r.t. R.If $b \in[a]_{R}$ then b is representative of this equivalence class.
- Theorem 8: Let R be an equivalence relation on a set A. The following statements are equivalent:
(1) $a R b$
(2) $[a]=[b]$
(3) $[a] \cap[b] \neq \emptyset$
- A partition of a set S is a collection of disjoint nonempty subsets $A_{i}, i \in I$ (where I is an index set) of S that have S as their union: $A_{i} \neq \emptyset$ for $i \in I A_{i} \cap A_{j}=\emptyset$, when $i \neq j \bigcup_{i \in I} A_{i}=S$
- Theorem 9: Let R be an equivalence relation on a set S. Then the equivalence classes of R form a partition of S. Conversely, given a partition $\left\{A_{i} \mid i \in I\right\}$ of the set S, there is an equivalence relation R that has the sets $A_{i}, i \in I$, as its equivalence classes.

Graphs

- The degree of a vertex in an undirected graph is the number of edges incident with it, except that a loop at a vertex contributes twice to the degree of that vertex. The degree of the vertex v is denoted by $\operatorname{deg}(v)$.
- The Handshaking Theorem: Let $G=(V, E)$ be an undirected graph with e edges. Then $2 e=\sum_{v \in V} \operatorname{deg}(v)$.
- Theorem 10: An undirected graph has an even number of vertices of odd degree.
- In a graph with directed edges the in-degree of a vertex v, denoted by $\operatorname{deg}^{-}(v)$, is the number of edges with v as their terminal vertex. The out-degree of v, denoted by $\operatorname{deg}^{+}(v)$, is the number of edges with v as their initial vertex.
- Theorem 11: Let $G=(V, E)$ be a graph with directed edges. Then $\sum_{v \in V} \operatorname{deg}^{-}(v)=\sum_{v \in V} \operatorname{deg}^{+}(v)=|E|$.
- A simple graph is G is called bipartite if its vertex V can be partitioned into two disjoint nonempty sets V_{1} and V_{2} such that every edge in the graph connects a vertex in V_{1} and a vertex in V_{2} (so that no edge in G connects either two vertices in V_{1} or two vertices in V_{2}.
- The simple graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic if there is a one-to-one and onto function f from V_{1} to V_{2} with the property that a and b are adjacent in G_{1} if and only if $f(a)$ and $f(b)$ are adjacent in G_{2}, for all a and b in V_{1}. Such a function f is called an isomorphism.

