Propositional Equivalences

$p \wedge T \Leftrightarrow p$	Identity laws
$p \lor F \Leftrightarrow p$	
$p \lor T \Leftrightarrow T$	Domination laws
$p \wedge F \Leftrightarrow F$	
$p \lor p \Leftrightarrow p$	Idempotent laws
$p \wedge p \Leftrightarrow p$	
$\neg(\neg p) \Leftrightarrow p$	Double negation law
$p \lor q \Leftrightarrow q \lor p$	Commutative laws
$p \wedge q \Leftrightarrow q \wedge p$	
$(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$	Associative laws
$(p \wedge q) \wedge r \Leftrightarrow p \wedge (q \wedge r)$	
$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$	Distributive laws
$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$	
$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$	De Morgan's laws
$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$	

Rules of Inference

$\frac{p}{p \lor q}$	Addition
$rac{p\wedge q}{p}$	Simplification
$rac{p,q}{p\wedge q}$	Conjunction
$\frac{p, p \rightarrow q}{q}$	Modus ponens
$\frac{\neg q, p \rightarrow q}{\neg p}$	Modus tollens
$\frac{p \rightarrow q, q \rightarrow r}{p \rightarrow r}$	Hypothetical syllogism
$\frac{p \lor q, \neg p}{q}$	Disjunctive syllogism
$\frac{\forall x P(x)}{P(c) \text{ if } c \in U}$	Universal instantiation
$\frac{P(c) \text{ for an arbitrary } c \in U}{\forall x P(x)}$	Universal generalization
$\frac{\exists x P(x)}{P(c) \text{ for some } c \in U}$	Existential instantiation
$\frac{P(c) \text{ for some } c \in U}{\exists x P(x)}$	Existential generalization

Sets

- $\mathcal{P}(S)$: The **power set** of S is the set of all subsets of the set S.
- $A \times B$: The **Cartesian product** of A and B is the set of all ordered pairs (a, b) where $a \in A$ and $b \in B$.
- $A_1 \times A_2 \times \ldots \times A_n$: The **Cartesian product** of the sets A_1, A_2, \ldots, A_n is the set of ordered n-tuples (a_1, a_2, \ldots, a_n) , where a_i belongs to A_i for $i = 1, 2, \ldots, n$.

Functions

- $f: A \to B$: A function from A to B is an assignment of exactly one element of B to each element of A.
- A is the **domain** of f and B is the **codomain** of f.

- If f(a) = b, we say that b is the **image** of a and a is a **pre-image** of b. The **range** of f i the set of all images of elements of A.
- Injection: Function f is said to be one-to-one, if and only if f(x) = f(y) implies that x = y for all x and y in the domain of f.
- Surjection: Function f is said to be onto / surjective, if and only if for every element $b\epsilon B$ there is an element $a\epsilon A$ with f(a) = b.
- **Bijection:** Function f is a **one-to-one correspondence**, or **bijection**, if it is both one-to-one and onto.
- Inverse function: Let f be a one-to-one correspondence from A to B. The inverse function of f assigns to an element b in B the unique element a in A such that f(a) = b. The inverse function of f is denoted by f^{-1} . Hence, $f^{-1}(b) = a$ when f(a) = b.
- $f \circ g: g: A \to B, f: B \to C$. The composition of the functions f and g is defined by $(f \circ g)(a) = f(g(a))$

Integers

- Let a, b, and c be integers, $a \neq 0$.
- $a \mid b : a$ divides b if there is an integer c such that b = ac. When a divides b we say that a is a factor of b and that b is a multiple of a.
- **Prime:** A positive integer *p* greater than 1 is called prime if the only positive factors of *p* are 1 and *p*. A positive integer that is greater than 1 and is not prime is called **composite**.
- Fundamental Theorem of Arithmetic: Every positive integer can be written uniquely as the product of primes, where the prime factors are written in order of increasing size.
- Division algorithm: Let a be an integer and d a poisitive integer. Then there are unique integers q and r, with $0 \le r < d$, such that a = dq + r.
- gcd(a, b): Let a and b be integers, not both zero. The largest integer d such that $d \mid a$ and $d \mid b$ is called the greatest common divisor of a and b.
- The integers a and b are relatively prime if gcd(a, b) = 1.
- $a \equiv b \pmod{m}$ If a and b are integers and m is a positive integer, then a is congruent to b modulo m if m divides a b.
- Theorem 1: Let m be a positive integer. The integers a and b are congruent modulo m if and only if there is an integer k such that a = b + km.
- Theorem 2: Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$.
- Lemma 1: Let a = bq + r, where a, b, q, and r are integers. Then gcd(a, b) = gcd(b, r).

Counting Principles

- **Pascal's Identity:** Let n and k be positive integers with $n \ge k$. Then C(n+1,k) = C(n,k-1) + C(n,k)
- **Binomial Theorem:** Let x and y be variables, and let n be a positive integer. Then

$$(x+y)^n = \sum_{j=0}^n C(n,j) x^{n-j} y^j$$

Probability Theory

- Let S be the sample space of an experiment with a finite or countable number of outcomes. We assign probability p(s) to each outcome s. The following two conditions have to be met:
 (i) 0 ≤ p(s) ≤ 1 for each sεS
 (ii) ∑_{s∈S} p(s) = 1
- The probability of the event E is the sum of the probabilities of the outcomes in E. That is, $p(E) = \sum_{s \in E} p(s)$.

• Let E and F be events with p(F) > 0. The conditional probability of E given F is defined

$$p(E \mid F) = \frac{p(E \cap F)}{p(F)}.$$

• The events E and F are said to be **independent** if

$$p(E \cap F) = p(E)P(F).$$

- Bernoulli Trial: Experiment with only two possible outcomes: success or failure.
- Probability of k successes in n independent Bernoulli trials with probability of success p and probability of failure q = 1 p, is $C(n, k)p^kq^{n-k}$.
- A random variable is a function from the sample space of an experiment to the set of real numbers.
- The expected value (or expectation) of a random

$$E(X) = \sum_{s \in S} p(s)X(s)$$

- Theorem 3: If X and Y are random variables on a space S, then E(X + Y) = E(X) + E(Y). Furthermore, if $X_i, i = 1, 2, ..., n$, with n a positive integer, are random variables on S, and $X = X_1 + X_2 + ... + X_n$, then $E(X) = E(X_1) + E(X_2) + ... + E(X_n)$.
- The random variables X and Y on a sample space S are **independent** if for all real numbers r_1 and $r_2 p(X(s) = r_1$ and $Y(s) = r_2) = p(X(s) = r_1)\dot{p}(Y(s) = r_2)$.
- Theorem 4: If X and Y are independent random variables on a space S, then E(XY) = E(X)E(Y).
- Let X be random variables on a sample space S. The variance of X, denoted by V(X), is

$$V(X) = \sum_{s \in S} (X(s) - E(X))^2 p(s).$$

• Theorem 5: If X is a random variable on a space S, then $V(X) = E(X^2) - E(X)^2$.

Relations

- Let A and B be sets. A binary relation from A to B is a subset of $A \times B$. If $(a, b) \in R$, we write aRb and say a is related to b by R.
- Let R be a relation from a set A to a set B and S be a relation from B to a set C. The **composite** of R and S is the relation consisting of ordered pairs (a, c), where $a \in A, c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.
- Let R be a relation on the set A. The **powers** R^n , n = 1, 2, 3, ..., are defined inductively by $R^1 = R$ and $R^{n+1} = R^n \circ R$.
- Let P be a property of relations (e.g. transitivity, refexivity, symmetry). A relation S is losure of R w.r.t. P if and only if S has property P, S contains R, and S is a subset of every relation with property P containing R.
- There is a **path** from a to b in a relation R is there is a sequence of elements $a, x_1, x_2, \ldots, x_{n-1}, b$ with $(a, x_1) \in R, (x_1, x_2) \in R, \ldots, (x_{n-1}, b) \in R$.
- **Theorem 6**: Let R be a relation on a set A. There is a path of length n from a to b if and only if $(a, b) \in \mathbb{R}^n$.
- Let R be a relation on a set A. The connectivity relation R^* consists of pairs (a, b) such that there is a path between a and b in R.
- Theorem 7: The transitive closure of a relation R equals the connectivity relation R^* .
- A relation on a set A is called an **equivalence relation** if it is reflexive, symmetric, and transitive. Two elements that are related by an equivalence relation are called equivalent.
- Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A is called the **equivalence class** of a. $[a]_R$: equivalence class of a w.r.t. R.If $b \in [a]_R$ then b is **representative** of this equivalence class.

- **Theorem 8**: Let *R* be an equivalence relation on a set *A*. The following statements are equivalent: (1) *aRb*
 - (2) [a] = [b]
 - $(3) [a] \cap [b] \neq \emptyset$
- A partition of a set S is a collection of disjoint nonempty subsets A_i, i ∈ I (where I is an index set) of S that have S as their union: A_i ≠ Ø for i ∈ IA_i ∩ A_j = Ø, when i ≠ j∪_{i∈I} A_i = S
- **Theorem 9**: Let R be an equivalence relation on a set S. Then the equivalence classes of R form a partition of S. Conversely, given a partition $\{A_i \mid i \in I\}$ of the set S, there is an equivalence relation R that has the sets $A_i, i \in I$, as its equivalence classes.

Graphs

- The **degree** of a vertex in an undirected graph is the number of edges incident with it, except that a loop at a vertex contributes twice to the degree of that vertex. The degree of the vertex v is denoted by deg(v).
- The Handshaking Theorem: Let G = (V, E) be an undirected graph with e edges. Then $2e = \sum_{v \in V} \deg(v)$.
- **Theorem 10**: An undirected graph has an even number of vertices of odd degree.
- In a graph with directed edges the **in-degree** of a vertex v, denoted by deg⁻(v), is the number of edges with v as their terminal vertex. The **out-degree** of v, denoted by deg⁺(v), is the number of edges with v as their initial vertex.
- Theorem 11: Let G = (V, E) be a graph with directed edges. Then $\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = |E|$.
- A simple graph is G is called **bipartite** if its vertex V can be partitioned into two disjoint nonempty sets V_1 and V_2 such that every edge in the graph connects a vertex in V_1 and a vertex in V_2 (so that no edge in G connects either two vertices in V_1 or two vertices in V_2 .
- The simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are **isomorphic** if there is a one-to-one and onto function f from V_1 to V_2 with the property that a and b are adjacent in G_1 if and only if f(a) and f(b) are adjacent in G_2 , for all a and b in V_1 . Such a function f is called an **isomorphism**.