Discrete Structures

Graphs

Chapter 7, Sections 7.1-7.3

Dieter Fox

Undirected Graphs

\diamond A simple graph $G=(V, E)$ consists of V, a nonempty set of vertices, and E, a set of unordered pairs of distinct elements of V called edges.
\diamond A multigraph $G=(V, E)$ consists of a set V of vertices, a set E of edges, and a function f from E to $\{\{u, v\} \mid u, v \in V, u \neq v\}$. The edges e_{1} and e_{2} are called multiple or parallel edges if $f\left(e_{1}\right)=f\left(e_{2}\right)$.
\diamond A pseudograph $G=(V, E)$ consists of a set V of vertices, a set E of edges, and a function f from E to $\{\{u, v\} \mid u, v \in V\}$. An edge is a loop if $f(e)=\{u, u\}=\{u\}$ for some $u \in V$.

Directed Graphs

\diamond A directed graph $G=(V, E)$ consists of a set V of vertices and a set of edges E that are ordered pairs of elements of V.
\diamond A directed multigraph $G=(V, E)$ consists of a set V of vertices, a set E of edges, and a function f from E to $\{(u, v) \mid u, v \in V\}$. The edges e_{1} and e_{2} are multiple edges if $f\left(e_{1}\right)=f\left(e_{2}\right)$.

Undirected Graph Terminology

\diamond Two vertices u and v in an undirected graph G are called adjacent (or neighbors) in G if $\{u, v\}$ is an edge of G. If $e=\{u, v\}$, the edge e is called incident with the vertices u and v. The edge e is also said to connect u and v. The vertices u and v are called endpoints of the edges $\{u, v\}$.
\diamond The degree of a vertex in an undirected graph is the number of edges incident with it, except that a loop at a vertex contributes twice to the degree of that vertex. The degree of the vertex v is denoted by $\operatorname{deg}(v)$.
\diamond The Handshaking Theorem : Let $G=(V, E)$ be an undirected graph with e edges. Then

$$
2 e=\sum_{v \in V} \operatorname{deg}(v) .
$$

\diamond Theorem : An undirected graph has an even number of vertices of odd degree.

Directed Graph Terminology

\diamond When (u, v) is an edge of the graph G with directed edges, u is said to be adjacent to v and v is said to be adjacent from u. The vertex u is called the initial vertex of (u, v), and v is called the terminal or end vertex of (u, v). The initial vertex and terminal vertex of a loop are the same.
\diamond In a graph with directed edges the in-degree of a vertex v, denoted by $\operatorname{deg}^{-}(v)$, is the number of edges with v as their terminal vertex. The out-degree of v, denoted by $\operatorname{deg}^{+}(v)$, is the number of edges with v as their initial vertex.
\diamond Theorem: Let $G=(V, E)$ be a graph with directed edges. Then

$$
\sum_{v \in V} \operatorname{deg}^{-}(v)=\sum_{v \in V} \operatorname{deg}^{+}(v)=|E|
$$

More Definitions ...

\diamond A simple graph is G is called bipartite if its vertex V can be partitioned into two disjoint nonempty sets V_{1} and V_{2} such that every edge in the graph connects a vertex in V_{1} and a vertex in V_{2} (so that no edge in G connects either two vertices in V_{1} or two vertices in V_{2}.
\diamond A subgraph of a graph $G=(V, E)$ is a graph $H=(W, F)$ where $W \subseteq V$ and $F \subseteq E$.
\diamond The union of two simple graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is the simple graph with vertex set $V_{1} \cup V_{2}$ and edge set $E_{1} \cup E_{2}$. The union of G_{1} and G_{2} is denoted by $G_{1} \cup G_{2}$.
\diamond The simple graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic if there is a one-to-one and onto function f from V_{1} to V_{2} with the property that a and b are adjacent in G_{1} if and only if $f(a)$ and $f(b)$ are adjacent in G_{2}, for all a and b in V_{1}. Such a function f is called an isomorphism.

