
© Copyright Martin Tompa, 1999

Secret Codes

© Copyright Martin Tompa, 1999

What Is a Cryptosystem?

A

Sender

B

Receiver

C = EAB(M) M = DAB(C)M

KAB KAB

© Copyright Martin Tompa, 1999

What Is a Cryptosystem?

A

Sender

B

Receiver

Cryptanalyst

(bad guy)

C = EAB(M) M = DAB(C)M

KAB KAB

© Copyright Martin Tompa, 1999

What Is a Cryptosystem?

A

Sender

B

Receiver

Cryptanalyst

(bad guy)

C = EAB(M) M = DAB(C)M

M C KAB
Message Encryption Key
Plaintext Cyphertext
Cleartext

KAB KAB

© Copyright Martin Tompa, 1999

What Is a Public Key Cryptosystem?

A

Sender

B

Receiver

Cryptanalyst

(bad guy)

C = EAB(M) M = DAB(C)M

M C KB EB
Message Encryption Key Public Key
Plaintext Cyphertext Private Key
Cleartext

KAB KAB

© Copyright Martin Tompa, 1999

The RSA Public Key Cryptosystem

❖ Invented by Rivest, Shamir, and
Adleman in 1977.

❖ Has proven resistant to all cryptanalytic
attacks.

© Copyright Martin Tompa, 1999

Receiver’s Set-Up

❖ Choose 500-digit primes p and q,

with p ≡ 2 (mod 3) and q ≡ 2 (mod 3)
p = 5, q = 11

© Copyright Martin Tompa, 1999

Receiver’s Set-Up

❖ Choose 500-digit primes p and q,

with p ≡ 2 (mod 3) and q ≡ 2 (mod 3)
p = 5, q = 11

❖ Let n = pq.
n = 55

© Copyright Martin Tompa, 1999

Receiver’s Set-Up

❖ Choose 500-digit primes p and q,

with p ≡ 2 (mod 3) and q ≡ 2 (mod 3)
p = 5, q = 11

❖ Let n = pq.
n = 55

❖ Let s = (1/3) (2(p - 1)(q - 1) + 1).
s = (1/3) (2 ⋅ 4 ⋅ 10 + 1) = 27

© Copyright Martin Tompa, 1999

Receiver’s Set-Up

❖ Choose 500-digit primes p and q,

with p ≡ 2 (mod 3) and q ≡ 2 (mod 3)
p = 5, q = 11

❖ Let n = pq.
n = 55

❖ Let s = (1/3) (2(p - 1)(q - 1) + 1).
s = (1/3) (2 ⋅ 4 ⋅ 10 + 1) = 27

❖ Publish n.

Keep p, q, and s secret.

© Copyright Martin Tompa, 1999

Encrypting a Message

❖ Break the message into chunks.
H I C H R I S …

© Copyright Martin Tompa, 1999

Encrypting a Message

❖ Break the message into chunks.
H I C H R I S …

© Copyright Martin Tompa, 1999

Encrypting a Message

❖ Break the message into chunks.
H I C H R I S …

❖ Translate each chunk into an integer M (0 < M < n)
by any convenient method.
8 9 3 8 18 9 19 …

© Copyright Martin Tompa, 1999

Encrypting a Message

❖ Break the message into chunks.
H I C H R I S …

❖ Translate each chunk into an integer M (0 < M < n)
by any convenient method.
8 9 3 8 18 9 19 …

❖ Let E(M) = M3 mod n.
M = 8, n = 55
83 = 512 = 9×55 + 17
E(8) = 17

© Copyright Martin Tompa, 1999

Decrypting a Cyphertext C

❖ Let D(C) = Cs mod n.
C = 17, n = 55, s = 27
1727 = 1,667,711,322,168,688,287,513,535,727,415,473

= 30,322,024,039,430,696,136,609,740,498,463 × 55 + 8
D(17) = 8

© Copyright Martin Tompa, 1999

Decrypting a Cyphertext C

❖ Let D(C) = Cs mod n.
C = 17, n = 55, s = 27
1727 = 1,667,711,322,168,688,287,513,535,727,415,473

= 30,322,024,039,430,696,136,609,740,498,463 × 55 + 8
D(17) = 8

❖ Translate D(C) into letters.
H

© Copyright Martin Tompa, 1999

Decrypting a Cyphertext C Efficiently

❖ C = 17, n = 55, s = 27
172 ≡ 289 ≡ 14 (mod 55)
174 ≡ 172 • 172 ≡ 14 • 14 ≡ 196 ≡ 31 (mod 55)
178 ≡ 174 • 174 ≡ 31 • 31 ≡ 961 ≡ 26 (mod 55)
1716 ≡ 178 • 178 ≡ 26 • 26 ≡ 676 ≡ 16 (mod 55)
1727 ≡ 1716 • 178 • 172 • 171 ≡ 16 • 26 • 14 • 17 ≡ 416 • 14 • 17 ≡

31 • 14 • 17 ≡ 434 • 17 ≡ (-6) • 17 ≡ -102 ≡ 8 (mod 55)
D(17) = 8

© Copyright Martin Tompa, 1999

Why Does It Work?

Euler’s Theorem (1736): Suppose

❖ p and q are distinct primes,
❖ n = pq,
❖ 0 < M < n, and

❖ k > 0.
Then Mk(p-1)(q-1)+1 mod n = M.

© Copyright Martin Tompa, 1999

Why Does It Work?

Euler’s Theorem (1736): Suppose

❖ p and q are distinct primes,
❖ n = pq,
❖ 0 < M < n, and

❖ k > 0.
Then Mk(p-1)(q-1)+1 mod n = M.

(M3)s = (M3) (1/3)(2(p-1)(q-1)+1)

= M 2(p-1)(q-1)+1 ≡ M (mod n)

© Copyright Martin Tompa, 1999

Leonhard Euler 1707-1783

© Copyright Martin Tompa, 1999

Why Is It Secure?

❖ To find M = D(C), you seem to need s.

© Copyright Martin Tompa, 1999

Why Is It Secure?

❖ To find M = D(C), you seem to need s.

❖ To find s, you seem to need p and q.

© Copyright Martin Tompa, 1999

Why Is It Secure?

❖ To find M = D(C), you seem to need s.

❖ To find s, you seem to need p and q.
❖ All the cryptanalyst has is n = pq.

© Copyright Martin Tompa, 1999

Why Is It Secure?

❖ To find M = D(C), you seem to need s.

❖ To find s, you seem to need p and q.
❖ All the cryptanalyst has is n = pq.
❖ How hard is it to factor a 1000-digit number n?

With the grade school method,
doing 1,000,000,000 steps per second

it would take …

© Copyright Martin Tompa, 1999

Why Is It Secure?

❖ To find M = D(C), you seem to need s.

❖ To find s, you seem to need p and q.
❖ All the cryptanalyst has is n = pq.
❖ How hard is it to factor a 1000-digit number n?

With the grade school method,
doing 1,000,000,000 steps per second

it would take … 10483 years.

© Copyright Martin Tompa, 1999

State of the Art in Factoring

❖ 1977: Inventors encrypt a challenge using “RSA129,”
a 129-digit number n = pq.

❖ 1981: Pomerance invents Quadratic Sieve factoring
method.

❖ 1994: Using Quadratic Sieve, RSA129 is factored
over 8 months using 1000 computers on the Internet
around the world.

❖ 1999: Using a new method, RSA140 is factored.

© Copyright Martin Tompa, 1999

State of the Art in Factoring

❖ 1977: Inventors encrypt a challenge using “RSA129,”
a 129-digit number n = pq.

❖ 1981: Pomerance invents Quadratic Sieve factoring
method.

❖ 1994: Using Quadratic Sieve, RSA129 is factored
over 8 months using 1000 computers on the Internet
around the world.

❖ 1999: Using a new method, RSA140 is factored.
❖ Using Quadratic Sieve, a 250-digit number would

take 800,000,000 months instead of 8.

