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What Is a Public Key Cryptosystem?

A
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B
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Cryptanalyst

(bad guy)

C = EAB(M) M = DAB(C)M

M           C             KB EB
Message Encryption Key Public Key
Plaintext Cyphertext Private Key
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The RSA Public Key Cryptosystem

❖ Invented by Rivest, Shamir, and 
Adleman in 1977.

❖ Has proven resistant to all cryptanalytic 
attacks.
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Receiver’s Set-Up

❖ Choose 500-digit primes p and q, 

with p ≡ 2 (mod 3) and q ≡ 2 (mod 3)
p = 5, q = 11

❖ Let n = pq.
n = 55

❖ Let s = (1/3) (2(p - 1)(q - 1) + 1).
s = (1/3) (2 ⋅ 4 ⋅ 10 + 1) = 27

❖ Publish n.

Keep p, q, and s secret.
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Encrypting a Message

❖ Break the message into chunks.
H   I      C   H   R   I   S    …

❖ Translate each chunk into an integer M (0 < M < n) 
by any convenient method.
8    9     3    8   18    9   19   …

❖ Let E(M) = M3 mod n. 
M = 8, n = 55
83 = 512 =  9×55  + 17
E(8) = 17
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Decrypting a Cyphertext C

❖ Let D(C) = Cs mod n.
C = 17, n = 55, s = 27
1727 = 1,667,711,322,168,688,287,513,535,727,415,473

= 30,322,024,039,430,696,136,609,740,498,463 × 55 + 8
D(17) = 8
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Decrypting a Cyphertext C

❖ Let D(C) = Cs mod n.
C = 17, n = 55, s = 27
1727 = 1,667,711,322,168,688,287,513,535,727,415,473

= 30,322,024,039,430,696,136,609,740,498,463 × 55 + 8
D(17) = 8

❖ Translate D(C) into letters.
H
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Decrypting a Cyphertext C Efficiently

❖ C = 17, n = 55, s = 27
172 ≡ 289 ≡ 14 (mod 55)
174 ≡ 172 • 172 ≡ 14 • 14 ≡ 196 ≡ 31 (mod 55)
178 ≡ 174 • 174 ≡ 31 • 31 ≡ 961 ≡ 26 (mod 55)
1716 ≡ 178 • 178 ≡ 26 • 26 ≡ 676 ≡ 16 (mod 55)
1727 ≡ 1716 • 178 • 172 • 171 ≡ 16 • 26 • 14 • 17 ≡ 416 • 14 • 17 ≡

31 • 14 • 17 ≡ 434 • 17 ≡ (-6) • 17 ≡ -102 ≡ 8 (mod 55)
D(17) = 8
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Why Does It Work?

Euler’s Theorem (1736):  Suppose 

❖ p and q are distinct primes, 
❖ n = pq,
❖ 0 < M < n, and 

❖ k > 0.
Then Mk(p-1)(q-1)+1 mod n = M.
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Euler’s Theorem (1736):  Suppose 

❖ p and q are distinct primes, 
❖ n = pq,
❖ 0 < M < n, and 

❖ k > 0.
Then Mk(p-1)(q-1)+1 mod n = M.

(M3)s = (M3) (1/3)(2(p-1)(q-1)+1)

= M 2(p-1)(q-1)+1 ≡ M (mod n)
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Leonhard Euler 1707-1783
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Why Is It Secure?

❖ To find M = D(C), you seem to need s.

❖ To find s, you seem to need p and q.
❖ All the cryptanalyst has is n = pq.
❖ How hard is it to factor a 1000-digit number n?

With the grade school method, 
doing 1,000,000,000 steps per second 

it would take … 10483 years.
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State of the Art in Factoring

❖ 1977:  Inventors encrypt a challenge using “RSA129,” 
a 129-digit number n = pq.

❖ 1981:  Pomerance invents Quadratic Sieve factoring 
method.

❖ 1994:  Using Quadratic Sieve, RSA129 is factored 
over 8 months using 1000 computers on the Internet 
around the world.

❖ 1999:  Using a new method, RSA140 is factored.
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State of the Art in Factoring

❖ 1977:  Inventors encrypt a challenge using “RSA129,” 
a 129-digit number n = pq.

❖ 1981:  Pomerance invents Quadratic Sieve factoring 
method.

❖ 1994:  Using Quadratic Sieve, RSA129 is factored 
over 8 months using 1000 computers on the Internet 
around the world.

❖ 1999:  Using a new method, RSA140 is factored.
❖ Using Quadratic Sieve, a 250-digit number would 

take 800,000,000 months instead of 8.


