CSE 321: Discrete Structures
Assignment #6

May 14, 2003

due: Friday, May 23

1. It is a somewhat amazing fact that the greatest common divisor can be written as a linear combination,

that is, ged(a, b) = sa + tb, for some integers s and ¢. It is sometimes important to be able to compute
not only the greatest common divisor, but the coefficients s and ¢ as well. (Part (b) of this problem
gives an example application.) The following extension of Euclid’s algorithm computes the ged g plus
those coefficients. Try it out on some examples.
(The programming notation (z,y) < (e, f) means simultaneous assignments of the old value of e to
z and the old value of f to y. For instance, the body of the ordinary Euclidean algorithm’s loop
could have been written (z,y) < (y,z mod y). Note that this is exactly the effect of the statement
(ag,a1) < (a1,a0 — ¢ * a1) below, so that the output g is still gcd(a,b).)

procedure Extended Euclid (a, b: integer) returns g, s,t: integer

begin
(a0, a1) < (a,b);
(80, 81) < (1,0);

(to,t1) < (0,1);

while a; # 0 do

begin
g < lao/a1];
(a0,a1) < (a1,a0 — g *a1);
(80,81) < (81,80 — q * 81);
(to,t1) « (ti,to — g * t1);

end ;

g < ao;

8§ < 8p;

t — to;

end .

(a) Prove that the inputs and outputs satisfy g = sa + tb. (Hint: Use induction to prove that
ag = soa + tob and a; = s1a + t1b at the beginning of each iteration.)

(b) The inverse of @ mod m, if it exists, is an integer s such that as =1 (mod m). As an ex-
ample of the usefulness of this algorithm, show that whenever gcd(a,m) = 1, the outputs of
Extended_Euclid(a, m) produce an inverse of @ mod m. (It turns out that an inverse of @ mod m
only exists when ged(a,m) = 1. It’s not a hard proof, if you feel like trying it.)

2. A binary tree is either empty, or consists of a root node and a “left subtree” and “right subtree”, which
are themselves binary trees with no nodes in common. (See Figure 8 in Section 8.1 for an example.)
Any node in a binary tree both of whose subtrees are empty is called a leaf. For example, the tree in
Figure 8(a) of Section 8.1 has 6 leaves: f,g,e, 7, k,m. The height of a binary tree is the distance from
the root to the farthest leaf. The tree in Figure 8(a) of Section 8.1 has height 4, m being the farthest
leaf from the root. (Note that the distance from the root to m is considered to be 4 rather than 5:
it’s the number of edges on the path, rather than the number of nodes.) By induction, prove that
for any positive integer n, any binary tree with n leaves has height at least log, n. Be careful of the
possibility that a node has one empty subtree and one nonempty subtree. (Hint: it will be simplest if
your induction mirrors the recursive definition of binary tree given above.)

3. Section 3.3, exercise 28. I don’t know what is meant by a “recursive proof”; instead, use induction on
the length |ws|. I want you to use the recursive definition of reversal given in exercise 27, rather than
the more imprecise definition given before exercise 26.



