CSE 321: Discrete Structures
Assignment \#3
October 15, 2004
Due: Friday, October 22

Reading Assignment: Read Sections 1.6-1.8, 2.4, and 2.5.
Problems:

1. Section 1.5, exercise 20.
2. Section 1.5, exercise 26.
3. Section 1.5, exercise 28.
4. Prove that for all integers n, n^{2} always leaves a remainder of 0 or 1 when divided by 4 .
5. Section 1.5, exercise 74.
6. Prove or disprove that $n^{2}+3 n+1$ is always prime for integer $n>0$.
7. Prove the following statements using the definitions of set operations and properties:

- $(A \cap B=A) \rightarrow(A \subseteq B)$
- $(A \subseteq B) \leftrightarrow(\bar{B} \subseteq \bar{A})$

8. Extra Credit: Prove that any prime number larger than 3 leaves a remainder of 1 or 5 when divided by 6 .
