Problem Set 7

Due Friday, May 28, 2004, in class

All exercise numbers refer to the number in Rosen's book, 5th Edition.

1. Suppose that n balls are tossed into b bins so that each ball is equally likely to fall into any of the bins and that the tosses are independent.
(a) Find the probability that a particular ball lands in a specified bin.
(b) What is the expected number of balls that land in a particular bin?
(c) What is the expected number of balls tossed until a particular bin contains a ball?
(d) What is the expected number of balls tossed until all bins contain a ball?
2. Let E, F be events with $P(F) \neq 0$. Prove that

$$
P(E)=P(E \mid F) P(F)+P(E \mid \bar{F}) P(\bar{F})
$$

3. Section 7.1, Exercise 4.
4. For the relation $R=\{(b, c),(b, e),(c, e),(d, a),(e, b),(e, c)\}$ on $\{a, b, c, d, e\}$, draw the following relations in digraph form:
(a) The reflexive closure of R.
(b) The symmetric closure of R.
(c) The transitive closure of R.
(d) The reflexive, symmetric, transitive closure of R.
5. Let R be the relation on the set of ordered pairs of positive integers such that $((a, b),(c, d)) \in R$ if and only if $a d=b c$. Show that R is an equivalence relation. (Can you identify what familiar objects the equivalence classes correspond to?)
6. A relation R is called circular if $a R b$ and $b R c$ imply that $c R a$. Show that R is reflexive and circular if and only if it is an equivalence relation.
7. Let R be a random relation on the set $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ selected as follows: Independently for each pair $i, j, 1 \leq i \leq n$ and $1 \leq j \leq n$, include $\left(a_{i}, a_{j}\right)$ in R with probability $1 / 2$. Now,
(a) What is the probability that R is reflexive?
(b) What is the probability that R is irreflexive? (A relation R on A is said to be irreflexive if for every $a \in A,(a, a) \notin R$.)
(c) What is the probability that R is symmetric?
(d) What is the probability that R is anti-symmetric?
(e) * (Bonus) What is the probability that R is a transitive tournament, that is R is irreflexive, transitive, and for each $i \neq j$, exactly one of the pairs $\left(a_{i}, a_{j}\right)$ and $\left(a_{j}, a_{i}\right)$ is in R ?
