PROBLEM SET 7 Due Friday, May 28, 2004, in class

All exercise numbers refer to the number in Rosen's book, 5th Edition.

- 1. Suppose that n balls are tossed into b bins so that each ball is equally likely to fall into any of the bins and that the tosses are independent.
 - (a) Find the probability that a particular ball lands in a specified bin.
 - (b) What is the expected number of balls that land in a particular bin?
 - (c) What is the expected number of balls tossed until a particular bin contains a ball?
 - (d) What is the expected number of balls tossed until all bins contain a ball?
- 2. Let E, F be events with $P(F) \neq 0$. Prove that

$$P(E) = P(E|F)P(F) + P(E|\bar{F})P(\bar{F}) .$$

- 3. Section 7.1, Exercise 4.
- 4. For the relation $R = \{(b, c), (b, e), (c, e), (d, a), (e, b), (e, c)\}$ on $\{a, b, c, d, e\}$, draw the following relations in digraph form:
 - (a) The reflexive closure of R.
 - (b) The symmetric closure of R.
 - (c) The transitive closure of R.
 - (d) The reflexive, symmetric, transitive closure of R.
- 5. Let R be the relation on the set of ordered pairs of positive integers such that $((a,b),(c,d)) \in R$ if and only if ad = bc. Show that R is an equivalence relation. (Can you identify what familiar objects the equivalence classes correspond to?)
- 6. A relation R is called *circular* if a R b and b R c imply that c R a. Show that R is reflexive and circular if and only if it is an equivalence relation.
- 7. Let R be a random relation on the set $A = \{a_1, a_2, \ldots, a_n\}$ selected as follows: Independently for each pair $i, j, 1 \le i \le n$ and $1 \le j \le n$, include (a_i, a_j) in R with probability 1/2. Now,
 - (a) What is the probability that R is reflexive?
 - (b) What is the probability that R is irreflexive? (A relation R on A is said to be *irreflexive* if for every $a \in A$, $(a, a) \notin R$.)
 - (c) What is the probability that R is symmetric?
 - (d) What is the probability that R is anti-symmetric?
 - (e) * (Bonus) What is the probability that R is a transitive tournament, that is R is irreflexive, transitive, and for each $i \neq j$, exactly one of the pairs (a_i, a_j) and (a_j, a_i) is in R?