CSE 321: Discrete Structures
Assignment \#2
Due: Wednesday, April 13
Reading Assignment: Section ?? of Rosen.

Problems:

1. Section 1.3, exercise 8 .
2. Section 1.3, exercise 46.
3. Section 1.4, exercise 10 ($\mathrm{d}, \mathrm{h}, \mathrm{i}, \mathrm{j}$).
4. Section 1.4, exercise 28 ($\mathrm{a}, \mathrm{c}, \mathrm{e}, \mathrm{f}, \mathrm{h}, \mathrm{j}$).
5. Prove or disprove the claim that $\forall x(P(x) \rightarrow Q(x))$ is logically equivalent to $\forall P(x) \rightarrow \forall Q(x)$.
6. Section 1.5, exercise 22 (a).
7. Section 1.5, exercise 28.
8. Prove that if a, b, c are real numbers and $a \neq 0$, there is a unique solution of the equation $a x+b=c$. (Hint: you need to prove both the existence and uniqueness. For the uniqueness, use the approach of contradiction).
9. Which of the following statements are true?
(a) $\{x\} \subseteq\{x\}$
(b) $\{x\} \in\{x,\{x\}\}$
(c) $\{x\} \in\{x\}$
(d) $\{x,\{x\}\} \subseteq \mathcal{P}(\{x\})$
