CSE 321: Discrete Structures
Assignment \#4
Due: Wednesday, April 27
Reading Assignment: Section 3.3- 3.4, 4.1-4.3 of Rosen.

Problems:

1. Use Euclid's algorithm to compute the following showing all the intermediate steps: $\operatorname{gcd}(3939,143)$.
2. Let a, b and c be integers. Prove that if a does not divide $b c$, then a does not divide c.
3. (a) Let a, b be positive integers. Define $S_{a, b}$ to be the set of all positive integers that can be written in the form $s a+t b$ for integers s, t. Prove that the smallest element in $S_{a, b}$ (why should it exist?) is in fact equal to $\operatorname{gcd}(a, b)$.
(b) Prove that the linear equation $a x+b y=c$ where a, b, c are integers and $a \neq 0$ and $b \neq 0$ has a solution in integers (x, y) if and only if $\operatorname{gcd}(a, b) \mid c$.
4. Section 3.3, exercise 10.
5. Section 3.3, exercise 12.
6. Section 3.3, exercise 44.
7. Use mathematical induction to prove that

$$
\sum_{k=1}^{n} k 2^{k}=(n-1) 2^{n+1}+2 .
$$

