CSE 321: Discrete Structures Assignment #8 Due: Wednesday, June 1

Reading Assignment: Chapter 8 of Rosen.

Problems:

- 1. Let R be the relation on the set of ordered pairs of positive integers such that $((a, b), (c, d)) \in R$ if and only if ad = bc. Show that R is an equivalence relation.
- 2. For the relation $R = \{(b,c), (b,e), (c,e), (d,a), (e,b), (e,c)\}$ on $\{a, b, c, d, e\}$, draw the following relations in digraph form:
 - (a) The reflexive closure of R.
 - (b) The symmetric closure of R.
 - (c) The transitive closure of R.
 - (d) The reflexive, symmetric, transitive closure of R.
- 3. Let R be a random relation on a set $A = \{a_1, a_2, \ldots, a_n\}$ selected as follows: Independently, for each pair $i, j, 1 \leq i \leq n$ and $1 \leq j \leq n$, (a_i, a_j) is included in R with probability 1/2
 - (a) What is the probability that R is reflexive?
 - (b) What is the probability that R is irreflexive? (A relation R on A is said to be irreflexive if for every $a \in A$, $(a, a) \notin R$.)
 - (c) What is the probability that R is symmetric?
 - (d) What is the probability that R is anti-symmetric?
- 4. Section 8.1, exercise 26.
- 5. Section 8.4, problem 22.
- 6. Section 8.5, exercise 26.
- 7. Section 8.7, exercise 16