CSE 321: Discrete Structures
Assignment \#8
Due: Wednesday, June 1
Reading Assignment: Chapter 8 of Rosen.

Problems:

1. Let R be the relation on the set of ordered pairs of positive integers such that $((a, b),(c, d)) \in R$ if and only if $a d=b c$. Show that R is an equivalence relation.
2. For the relation $R=\{(b, c),(b, e),(c, e),(d, a),(e, b),(e, c)\}$ on $\{a, b, c, d, e\}$, draw the following relations in digraph form:
(a) The reflexive closure of R.
(b) The symmetric closure of R.
(c) The transitive closure of R.
(d) The reflexive, symmetric, transitive closure of R.
3. Let R be a random relation on a set $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ selected as follows: Independently, for each pair $i, j, 1 \leq i \leq n$ and $1 \leq j \leq n$, $\left(a_{i}, a_{j}\right)$ is included in R with probability $1 / 2$
(a) What is the probability that R is reflexive?
(b) What is the probability that R is irreflexive? (A relation R on A is said to be irreflexive if for every $a \in A,(a, a) \notin R$.)
(c) What is the probability that R is symmetric?
(d) What is the probability that R is anti-symmetric?
4. Section 8.1, exercise 26.
5. Section 8.4, problem 22.
6. Section 8.5, exercise 26.
7. Section 8.7, exercise 16
