Reading Assignment: Rosen's text 6th Edition: sections 3.5-3.6 \& 4.1-4.2 (or, 5th Edition: sections 2.4-2.5 \& 3.3).

Problems:

1. 6th edition: Section 1.6, Exercise 28. (5th edition: Section 1.5, Exercise 40.)
2. Prove that if n is an integer then $n^{2} \bmod 8$ is either 0,1 , or 4 .
3. 6th edition: Section 3.4, Exercise 22. (5th edition: Section 2.4, Exercise 44.)
4. Compute the greatest common divisor for each of the following pairs of numbers.
(a) $2^{2} \cdot 3^{3} \cdot 5^{5}, 2^{5} \cdot 3^{3} \cdot 5^{2}$
(b) 1000,625
(c) $20!, 127$
5. How many zeroes are there at the end of 100 !?

Hint: Think about the unique factorization of 100 ! into primes.
6. Prove that for any prime $p>3$, either $p \equiv 1(\bmod 6)$ or $p \equiv 5(\bmod 6)$.
7. 6th edition: Section 3.5, Exercise 32. (5th edition: Section 2.4, Exercise 46.)
8. Extra Credit: Use the result of problem 2 above to show that the equation $3 x^{2}-2 y^{2}=69$ does not have any solution where both x and y are integers.
9. Extra Credit: Prove that if a positive integer n is not a perfect square then \sqrt{n} is irrational.

