Problem Set 7

Due Friday, May 26, 2006, in class

Reading: Sections 7.1, 7.4, 7.5

1. Suppose that n balls are tossed into b bins so that each ball is equally likely to fall into any of the bins and that the tosses are independent.
(a) Find the probability that a particular ball lands in a specified bin.
(b) What is the expected number of balls that land in a particular bin?
(c) What is the expected number of balls tossed until a particular bin contains a ball?
(d) What is the expected number of balls tossed until all bins contain a ball?
2. Let E, F be events with $P(F) \neq 0$. Prove that

$$
P(E)=P(E \mid F) P(F)+P(E \mid \bar{F}) P(\bar{F}) .
$$

3. Section 7.1, Exercise 4.
4. A relation R is called circular if $a R b$ and $b R c$ imply that $c R a$. Show that R is reflexive and circular if and only if it is an equivalence relation.
5. Let R be a random relation on the set $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ selected as follows: Independently for each pair $i, j, 1 \leq i \leq n$ and $1 \leq j \leq n$, include $\left(a_{i}, a_{j}\right)$ in R with probability p. Now,
(a) What is the probability that R is reflexive?
(b) What is the probability that R is irreflexive? (A relation R on A is said to be irreflexive if for every $a \in A,(a, a) \notin R$.)
(c) What is the probability that R is symmetric?
(d) What is the probability that R is anti-symmetric?
(e) What is the expected number of pairs $\left\{a_{i}, a_{j}\right\}$ such that $i \neq j$ and both $\left(a_{i}, a_{j}\right)$ and $\left(a_{j}, a_{i}\right)$ are in R.
