Problem Set 3
 Due Friday, April 20, 2007, in class

Instructions: Same as for Problem Set 1.

The exercise numbers refer to the number in Rosen's book, 6th Edition. When a different number is used in the 5th edition, that number is also mentioned.

1. Prove that if you pick 10 distinct numbers from 1 to 1000 , then there is a pair of numbers such that the larger of the two is less than twice the other.
2. Prove that if b and c are positive integers and $b c$ is even, then b is even or c is even.
3. Prove or disprove: The value $2 n^{2}+29$ is always prime for every integer $n>0$.
4. (a) Prove that if n is an integer then $n^{2} \bmod 8$ is either 0,1 , or 4 .
(b) Does the equation $3 x^{2}-2 y^{2}=85$ have any solutions where x and y are both integers? Why, or why not?
5. Prove that a positive integer n is divisible by 3 if and only if the sum of digits of n written in decimal is divisible by 3 .
6. Sometimes it is easier to prove a stronger statement than is apparently required. In this problem, you will prove by mathematical induction that for all $n \geq 1$,

$$
1+\frac{1}{4}+\frac{1}{9}+\cdots+\frac{1}{n^{2}}<2
$$

(a) What doesn't work if one tries to produce an inductive proof in which $P(n)$ is the statement $\sum_{k=1}^{n} \frac{1}{k^{2}}<2 ?$
(b) Now use induction to prove the stronger statement that for all $n \geq 1, \sum_{k=1}^{n} \frac{1}{k^{2}}<2-\frac{1}{n}$.
7. What is wrong with this "proof"?
"Theorem": For every even positive integer n, if x, y are positive integers such that $x+y=n$, then $x=y=n / 2$.
$\underline{\text { Basis step: }}$ Suppose that $n=2$. If x, y are positive integers and $x+y=2$, then we have $x=1$ and $y=1$.
Inductive step: Let $n \geq 2$ be an even number. Assume that whenever $x+y=n$ and x, y are positive integers, $x=y=n / 2$. Now suppose $x+y=n+2$, where x, y are positive integers. Then $(x-1)+(y-1)=n$, and therefore by induction hypothesis, $x-1=y-1=n / 2$. This implies that $x=y=(n+2) / 2$, completing the inductive step.
8. Section 4.2, Exercise 14. (5th Edition: Section 3.3, Exercise 40.)

You are welcome to use any proof method, including mathematical induction. If you are thinking of arguments besides induction, let me say as a hint that the claimed bound follows from a slick one sentence proof.

