Problem Set 8
Due Friday, June 1, 2007, in class

## There are SEVEN problems, each worth 10 points.

Reading Assignment: 6th Edition: 8.4,8.5, 9.1-9.4. 5th edition: 7.4,7.5, 8.1-8.4.

1. For the relation $R=\{(b, c),(b, e),(c, e),(d, a),(e, b),(e, c)\}$ on $\{a, b, c, d, e\}$, draw the following relations in digraph form:
(a) The reflexive closure of $R$.
(b) The symmetric closure of $R$.
(c) The transitive closure of $R$.
(d) The reflexive, symmetric, transitive closure of $R$.
2. Let $R$ be a symmetric relation. Show that $R^{n}$ is symmetric for all positive integers $n$.
3. Let $p$ be an odd prime, and let $A=\{1,2, \ldots, p-1\}$. Define a relation $T$ on $A$ by $T=\{(a, b) \in$ $A \times A \mid a \equiv 2^{s} b(\bmod p)$ for some non-negative integer $\left.s\right\}$. Prove that $T$ is an equivalence relation.
4. A relation $R$ is called circular if $a R b$ and $b R c$ imply that $c R a$. Show that $R$ is reflexive and circular if and only if it is an equivalence relation.
5. Consider a tournament among $n$ players where each player plays every other player exactly once and all the $\binom{n}{2}$ games thus played result in a win/loss result. Define a natural "defeat" relation $D$ on the set of players as follows: $a D b$ if player $a$ defeated player $b$ in their head-tohead encounter. Prove that the relation $D$ has the following property: there exists a player $w$ such that for every other player $x$ either $w D x$ or there exists a player $z$ such that $w D z$ and $z D x$.
(Hint: Try for the candidate $w$ a player who has defeated the most other players.)
6. Prove that any simple, undirected graph on $n \geq 2$ vertices contains two vertices of equal degree.
7. Suppose $G$ is a simple, undirected graph on $2 n$ vertices that contains no triangles (cycles of length 3). Prove that $G$ has at most $n^{2}$ edges. (Hint: Induction on $n$ is one possible approach.)
