
CSE 321 Winter 2007 Midterm Solutions

1. (15 points)

(a) Use the extended Euclidean algorithm to solve 33x ≡ 4 (mod 7) fox x.

Solution: We will need to find an inverse of 33 modulo 7. We first use Euclid’s
algorithm to find the gcd of 33 and 7, then we will use the computation history of this
algorithm to find the inverse. This process in full is the extended Euclidean algorithm.

gcd(33,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = gcd(1,0) = 1.

If we expand out the computations used in the execution of this algorithm, we will be
able to find our inverse.

(a) 33 = 4 · 7 + 5

(b) 7 = 1 · 5 + 2

(c) 5 = 2 · 2 + 1

(d) 2 = 2 · 1

To find an inverse of 33 modulo 7, we are looking for an s and t such that 1 = s·33+t·7.
Such an inverse is guaranteed to exist, because 33 and 7 are relatively prime, as we
showed above. We combine each of the three equations above to express 1 in this way.

Equation (c) gives us 1 = 5− 2 · 2.

We then replace the second 2 above with larger terms, by using equation (b).

1 = 5− 2 · (7− 1 · 5) = 3 · 5− 2 · 7.

Note that we could actually stop here if we recognized that 33 ≡ 5 (mod 7), so we
could just find the inverse of 5 (mod 7). However, nobody did this.

Finally, we replace 5 with larger terms by using equation (a). 1 = 3 ·(33−4 ·7)−2 ·7 =
3 · 33− 14 · 7.

We now see that 1 = s ·33+ t ·7, where s = 3, and t = −14. Rearranging this equation
gives 1 + 14 · 7 = 3 · 33. We can see that the left side is congruent to 1 mod 7, so 3 is
the inverse of 33 modulo 7.

Moving back to the linear congruence we were trying to solve, 33x ≡ 4 (mod 7).
3 · 33 ≡ 1 (mod 7), so 3 · 33x ≡ 3 · 4 (mod 7) ⇔ 1 · x ≡ 12 (mod 7) ⇔ x ≡ 5 (mod 7).
Thus the linear congruence is solved.
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(b) Find an inverse of 7 modulo 33.

Solution: The first important thing to notice is that this problem is not the same
as the one above. It requires an inverse of 7 modulo 33, not an inverse of 33 modulo
7. Some people only attempted one of these problems, which seemed to indicate that
they thought (a) and (b) were identical. That said, all the hard work for this problem
has already been done in part (a). We know that the equation 1 = 3 · 33 + (−14) · 7
holds. By rearranging this, we find that 1 + (−3) · 33 = (−14) · 7. Clearly, -14 is an
inverse of 7 modulo 33.

We accepted -14 with little to no explanation, if the work in part (a) was done. We
also accepted any number congruent to -14 modulo 33, for example 19. Some people
repeated the work of running and using the extended Euclid algorithm twice, which
was fine. What wasn’t acceptable was simply guessing numbers until one turned out
to be an inverse.

2. (15 points) Let n be an integer. Prove that if nx is irrational, then x is irrational.

Solution: The simplest solution to this problem used proof by contraposition.

Proof: We prove that if x is rational, then nx is rational.

Assume that x is rational. Then there exist integers p and q s.t. x = p
q
. Thus,

nx = np
q

= np
q

. n and p are integers, and the product of two integers is an integer,
therefore, np is an integer. Since np and q are both integers, nx = np

q
is rational, by

the definition of a rational number.

We have proved that if x is not irrational, it implies nx is not irrational, provided n is
an integer. This is the contrapositive of the statement we wished to prove, and hence
equivalent to our goal. This completes the proof.

Many people used a proof by contradiction, which is perfectly acceptable. There is
a correspondence between proofs by contradiction and proofs by contraposition that
works in many cases. Here, the proof assumes that nx is irrational but x is rational,
then shows that x being rational implies that nx is rational, causing a contradiction.

Most people who tried to prove this theorem directly had some difficulty. If you simply
start with the fact that ¬∃p∃q nx = p

q
, it’s harder to rigorously argue that when you

divide nx by n there will still be no p and q s.t. p
q

equals it.
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3. (15 points) Circle T or F to indicate whether each of the following statements is true
or false. If the answer is false, briefly explain why. Assume positive integers for all
numbers.

(a) If ac ≡ bc (mod m), then a ≡ b (mod m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F

Let a = 1, b = 2, c = 10, m = 10, then it is true that 10 ≡ 20 (mod 10), but
1 6≡ 2 (mod 10).

Some students tried to say that you cannot infer m|(a− b) from m|(ac− bc), but
that does not mean you cannot prove it in some other fashion. A counterexample
is sufficient to show that the implication does not hold.

(b) If a|c, then ∃b(a|b ∧ b|c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T

Let b = c or b = a.

(c) gcd(a, a mod b) ≤ gcd(a, b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F

If a = 3, b = 5, then gcd(3, 3 mod 5) = gcd(3, 3) = 3, whereas gcd(3, 5) = 1.
Thus gcd(3, 3 mod 5) 6≤ gcd(3, 5).

(d) If gcd(a, b) = gcd(b, c), then gcd(a, b) = gcd(a, c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F

If a = c = 10, b = 5, then gcd(10, 5) = gcd(5, 10), but gcd(10, 5) 6= gcd(10, 10).

(e) (¬p ∧ ¬q)→ ¬(p ∨ q) is a tautology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T

(f) q → (p ∨ ¬p) is a tautology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T

(g) (p→ q)→ (q → p) is a tautology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F

If p is F and q is T, then (p → q) is T and (q → p) is F, which is F. Thus the
original implication is not always T.
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4. (15 points) Define the following predicates.

• M(x, y): “x is married to y”

• S(x, y): “x is a sibling of y”

• F (x): “x is female”

• P (x, y): “x is a (biological) parent of y”

Let the universe for all variables be the set of all people. Do not use the uniqueness
quantifier, ∃!. Express the following:

(a) Everyone is married to at most one person.

∀x∀y∀z((M(x, y) ∧M(x, z))→ y = z)

Some students wrote ∀x∃yM(x, y), but that translates to “Everyone is married
to at least one person.

(b) Tom is an only child (i.e. has no siblings).

∀x¬S(x, Tom) ≡ ¬∃xS(x, Tom)

(c) Siblings have a common (biological) parent.

∀x∀y(S(x, y)→ ∃z(P (z, x) ∧ P (z, y)))

(d) Alice is Bob’s half-sister. (Alice and Bob have exactly one common biological
parent.)

F (Alice) ∧ ∃x(P (x, Alice) ∧ P (x, Bob) ∧ ∀y((x 6= y)→ (¬P (y, Alice) ∨ ¬P (y, Bob))))

Many students who got close to this solution had the disjunction as a conjunction.
This would mean that Alice and Bob have only one parent (the common parent).
Alice and Bob presumably should each have another biological parent (that is not
common to them).

A common wrong answer was:

∀x∀y((P (x, Alice) ∧ P (x, Bob) ∧ P (y, Alice) ∧ P (y, Bob))→ (x 6= y))

This says that Alice and Bob cannot have more than one common parent, but it
does not say that such a common parent actually exists.
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5. (20 points) Prove that for every positive integer n,
∑n

k=1 k2k = (n− 1)2n+1 + 2.

Solution: As nearly everyone recognized, this theorem was intended to be proved
using induction. Only mathematical induction was necessary, but there was nothing
wrong with making the further assumptions of strong induction, even if you didn’t use
them.

Proof: Let P (n) be the proposition: “
∑n

k=1 k2k = (n− 1)2n+1 + 2”.

Base Case: We prove that P (1) holds.

1∑
k=1

k2k = 1 · 21 = 2 = (0)22 + 2 = (1− 1)21+1 + 2

Thus, P (1) holds.

Inductive Hypothesis: Assume that P (n) holds.

Inductive Step: We wish to prove that P (n + 1) holds, given the inductive hypothesis.

n+1∑
k=1

k2k = (
n∑

k=1

k2k) + (n + 1)2n+1

= (n− 1)2n+1 + 2 + (n + 1)2n+1

= (n− 1 + n + 1)2n+1 + 2

= 2n2n+1 + 2 = n2n+2 + 2 = ((n + 1)− 1)2(n+1)+1 + 2

where the second equality holds from the inductive hypothesis.
This proves that P (n + 1) holds. Thus, by induction, P (n) holds ∀n ≥ 1.

Quite a few mistakes were made on this problem, which have also been common in
induction on the homework. The most common mistake that people made was using
a single expression P (n) to represent both a mathematical function such as

∑n
k=1

and a logical expression about that mathematical expression, such as “
∑n

k=1 k2k =
(n − 1)2n+1 + 2”. This is a significant mistake because it makes your proof very
ambiguous. We’ve talked about this in section and in lecture, but still, only 2 points
were taken off for this mistake, as long as it did not drastically obscure your proof.

Some people missed the summation, and thought that they were being asked to prove
that n2n = (n− 1)2n+1 + 2. This proof is bound to break down somewhere along the
line, as it did in different places for different people, because it simply isn’t true.

Some people claimed to be doing induction, but then didn’t use their inductive hy-
pothesis at all, and attempted to show the equality by algebraic manipulation. This
won’t work out easily.

A few people formed their inductive hypothesis correctly by assuming that P (n) holds,
but then actually used the fact that P (n + 1) holds. This makes the proof trivial of
course, (and incorrect) since this is what we are trying to show.

Finally, people often used the variables n and k interchangeably, after they had only
defined one or the other. Points were rarely taken off for this, except when it made
the proof particularly confusing. However, in general, it is important to be careful to
pick variables for your induction, and use them consistently.
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6. (10 points) What is 1615 mod 7?

There are many ways to solve this problem. One of the longer ways is to apply the
modular exponentiation algorithm step-by-step:

15 = (1111)2, x = 1 and power = 16 mod 7 = 2.

i = 0 : a0 = 1: x = 1 · 2 mod 7 = 2 and power = 22 mod 7 = 4.

i = 1 : a1 = 1: x = 2 · 4 mod 7 = 1 and power = 42 mod 7 = 16 mod 7 = 2.

i = 2 : a2 = 1: x = 1 · 2 mod 7 = 2 and power = 22 mod 7 = 4.

i = 3 : a3 = 1: x = 2 · 4 mod 7 = 1 and power = 22 mod 7 = 16 mod 7 = 2.

The final value of x is 1.

Another way involved understanding exactly what the modular exponentiation algo-
rithm is actually doing:

We know that ab mod m = ((a mod m)(b mod m)) mod m.

So 1615 mod 7 = 215 mod 7, because 16 mod 7 = 2.

215 mod 7 = (28)(24)(22)(21) mod 7

= ((28 mod 7)(24 mod 7)(22 mod 7)(21 mod 7)) mod 7

= ((256 mod 7)(16 mod 7)(4 mod 7)(2 mod 7)) mod 7

= (4 · 2 · 4 · 2) mod 7

= 64 mod 7

= 1

Yet another way of solving the problem:

As above, we know we just need to solve 215 mod 7.

215 mod 7 = (23)5 mod 7

= 85 mod 7

= (8 mod 7)5 mod 7

= 15 mod 7

= 1
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7. (10 points) Find the flaw with the following “proof” that an = 1 for all nonnegative
integers n, whenever a is a nonzero real number.

Basis Step: a0 = 1 is true by the definition of a0.

Inductive Step: Assume that aj = 1 for all nonnegative integers j with j ≤ k. Then
note that

ak+1 =
ak · ak

ak−1
=

1 · 1
1

= 1.

Try not to use more than 50 words.

The “proof” fails when we try to compute a1. This means that k is equal to 0 and we
want to compute

a0+1 =
a0 · a0

a0−1

The denominator refers to a−1 which we don’t know the value of, because by the
inductive hypothesis, we only know aj for all nonnegative j ≤ 0—the only such j that
applies is 0.

Partial credit was given to those who recognized that there were not enough base cases,
but did not explain why you needed more. Others recognized that there was a problem
with a1, but did not explain clearly how the “proof” broke down.

8. (1 BONUS point) Tell us something funny. If you’re not particularly funny, then tell
us something interesting. If you have nothing interesting to say either, then draw a
picture of something. If nothing comes to mind, consider drawing Alex.

Q: What did the shrimp say when he got caught in the seaweed?
A: Kelp! Kelp!
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