- 1. (15 points)
 - (a) Use the extended Euclidean algorithm to solve $33x \equiv 4 \pmod{7}$ fox x.
 - (b) Find an inverse of 7 modulo 33.
- 2. (15 points) Let n be an integer. Prove that if nx is irrational, then x is irrational.
- 3. (15 points) Circle T or F to indicate whether each of the following statements is true or false. If the answer is false, *briefly* explain why. Assume positive integers for all numbers.

(c)
$$\gcd(a, a \mod b) \leq \gcd(a, b)$$
..... T F

(f)
$$q \to (p \lor \neg p)$$
 is a tautology..... T

- 4. (15 points) Define the following predicates.
 - M(x,y): "x is married to y"
 - S(x,y): "x is a sibling of y"
 - F(x): "x is female"
 - P(x,y): "x is a (biological) parent of y"

Let the universe for all variables be the set of all people. Do *not* use the uniqueness quantifier, \exists !. Express the following:

- (a) Everyone is married to at most one person.
- (b) Tom is an only child (i.e. has no siblings).
- (c) Siblings have a common (biological) parent.
- (d) Alice is Bob's half-sister. (Alice and Bob have exactly one common biological parent.)
- 5. (20 points) Prove that for every positive integer n, $\sum_{k=1}^{n} k2^k = (n-1)2^{n+1} + 2$.
- 6. (10 points) What is $16^{15} \mod 7$?
- 7. (10 points) Find the flaw with the following "proof" that $a^n = 1$ for all nonnegative integers n, whenever a is a nonzero real number.

Basis Step: $a^0 = 1$ is true by the definition of a^0 .

Inductive Step: Assume that $a^j = 1$ for all nonnegative integers j with $j \leq k$. Then note that

$$a^{k+1} = \frac{a^k \cdot a^k}{a^{k-1}} = \frac{1 \cdot 1}{1} = 1.$$

2

Try not to use more than 50 words.

Equivalences	
Identity Laws	$p \wedge \mathbf{T} \equiv p$
	$p \lor \mathbf{F} \equiv p$
Domination Laws	$p \lor \mathbf{T} \equiv \mathbf{T}$
	$p \wedge \mathbf{F} \equiv \mathbf{F}$
Idempotent Laws	$p \vee p \equiv p$
	$p \wedge p \equiv p$
Commutative Laws	$p \vee q \equiv q \vee p$
	$p \wedge q \equiv q \wedge p$
Associative Laws	$(p \lor q) \lor r \equiv p \lor (q \lor r)$
	$(p \land q) \land r \equiv p \land (q \land r)$
Distributive Laws	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
De Morgan's Laws	$\neg (p \land q) \equiv \neg p \lor \neg q$
	$\neg (p \lor q) \equiv \neg p \land \neg q$
Negation Laws	$p \vee \neg p \equiv \mathbf{T}$
	$p \land \neg p \equiv \mathbf{F}$
Double Negation Law	$\neg \neg p \equiv p$
Contrapositive Law	$p \to q \equiv \neg q \to \neg p$
Implication Law	$p \to q \equiv \neg p \lor q$
Quantifier Negation Laws	$\neg \exists x P(x) \equiv \forall x \neg P(x)$
	$\neg \forall x P(x) \equiv \exists x \neg P(x)$

Propositional and Predicate Equivalences

Inferences	
Modus Ponens	$\frac{p, \ p \to q}{\therefore q}$
Direct Proof	$\frac{p \Rightarrow q}{\therefore p \to q}$
Simplification	$\frac{p \wedge q}{\therefore p, \ q}$
Consolidation	$\frac{p, \ q}{\therefore p \land q}$
Disjunctive Syllogism	$\frac{p \vee q, \ \neg p}{\therefore q}$
Addition	$\frac{p}{\therefore p \vee q, \ q \vee p}$
Excluded Middle	$\overline{\therefore p \lor \neg p}$
Universal Instantiation	$\frac{\forall x P(x)}{\therefore P(c) : c \text{ arbitrary}}$
Universal Generalization	$\frac{P(c): c \text{ arbitrary; no dependency}}{\therefore \forall x P(x)}$
Existential Instantiation	$\frac{\exists x P(x)}{\therefore P(c): c \text{ new and specific; depends on } \dots}$
Existential Generalization	$\frac{P(c): c \text{ specific or arbitrary}}{\therefore \exists x P(x)}$

Propositional and Predicate Inferences