
1R. Rao, CSE 322

Recap of Undecidability Proof

✦ The Question: Are there languages that are not decidable by
any Turing machine (TM)?
➭ I.e. Are there problems that cannot be solved by any algorithm?

✦ Consider the language:
ATM = {<M,w> | M is a TM and M accepts w}
(Recall that <A,B,…> is just a string encoding the objects A, B, …)

✦ What can we say about ATM?
➭ ATM is Turing-recognizable: Recognizer TM R for ATM:

On input string <M,w>: Simulate M on w.
ACCEPT <M,w> if M halts & accepts w;
REJECT <M,w> if M halts & rejects
(Loop (& thus reject <M,w>) if M ends up looping).

R accepts <M,w> iff M accepts w ⇒ L(R) = ATM

2R. Rao, CSE 322

Is ATM also decidable?

✦ No, ATM = {<M,w> | M is a TM and M accepts w} is
undecidable! 1-slide Proof (by Contradiction):
1. Assume ATM is decidable ⇒ there’s a decider H, L(H) = ATM
2. H on <M,w> = ACC if M accepts w

REJ if M rejects w (halts in qREJ or loops on w)
3. Construct new TM D: On input <M>,

Simulate H on <M,<M>> (here, w = <M>)
If H accepts, then REJ input <M>
If H rejects, then ACC input <M>

4. What happens when D gets <D> as input?
D rejects <D> if H accepts <D,<D>> if D accepts <D>
D accepts <D> if H rejects <D,<D>> if D rejects <D>

Contradiction! D cannot exist ⇒ H cannot exist
Therefore, ATM is not a decidable language.

3R. Rao, CSE 322

Undecidability Proof uses Diagonalization

:::

…REJACCACC

…ACCloopREJ

…loopREJACCM1

M2

M3

:

<M1> <M2> <M3> …

Input string

List
of
TMs

If H
exists

??…ACCACCREJ

:

REJ

ACC

ACC

::::

…REJACCACC

…ACCREJREJ

…REJREJACCM1

M2

M3

:
D

<M1> <M2> <M3> … <D>

D outputs
opposite
of diagonal

D on <Mi> accepts if and only if Mi on <Mi> rejects.
So, D on <D> will accept if and only if D on <D> rejects!
A contradiction ⇒ H cannot exist!

4R. Rao, CSE 322

One Last Concept: Reducibility

✦ How do we show a new problem A is undecidable?
➭ Use diagonalization again? Yes, but too tedious.

✦ Easy Proof: Show that ATM is reducible to the new
problem A
➭What does this mean and how do we show this?

✦ Show that if A was decidable, then you can use the
decider for A as a subroutine to decide ATM
➭ A contradiction, therefore A must also be undecidable

5R. Rao, CSE 322

The Halting Problem is Undecidable (Turing, 1936)

✦ Halting Problem: Does TM M halt on input w?
➭ Equivalent language: AH = { <M,w> | TM M halts on input w}
➭ Need to show AH is undecidable
➭ We know ATM = {<M,w> | TM M accepts w} is undecidable

✦ Show ATM is reducible to AH (Theorem 5.1 in text)
➭ Suppose AH is decidable ⇒ there’s a decider MH for AH

➭ Then, we can construct a decider DTM for ATM:
On input <M,w>, run MH on <M,w>.

If MH rejects, then REJ (this takes care of M looping on w)
If MH accepts, then simulate M on w until M halts
If M accepts, then ACC input <M,w>; else REJ

L(DTM) = ATM ⇒ ATM is decidable! Contradiction ⇒ AH is undecidable

6R. Rao, CSE 322

Are There Languages That Are Not Even Recognizable?

✦ ATM and AH are undecidable but Turing-recognizable
➭ Are there languages that are not even Turing-recognizable?

✦ What happens if both A and A are Turing-recognizable?
➭ There exist TMs M1 and M2 that recognize A and A
➭ Can construct a decider for A! On input w:
1. Simulate M1 and M2 on w one step at a time, alternating

between them.
2. If M1 accepts, then ACC w and halt; if M2 accepts, REJ w

and halt.

✦ A and A are both Turing-recognizable iff A is decidable

✦ Corollary: ATM and AH are not Turing-recognizable
➭ If they were, then ATM and AH would be decidable

7R. Rao, CSE 322

The Chomsky Hierarchy of Languages

ATM,

AH

{0n1n 0n |
n ≥ 0},
ADFA,
ACFG

{0n1n | n ≥ 0},

Palindromes

(0∪1)*11Examples

TMs that
may loop for
strings not in
language

Deciders –
TMs that
halt for all
inputs

PDA,

CFG

DFA,
NFA,
RegExp

Computational
Models

Turing-
Recognizable

DecidableContext-FreeRegularLanguage

Increasing generality

(Chomsky also studied context-sensitive languages (CSLs, e.g. anbn cn) , a
subset of decidable languages recognized by linear-bounded automata (LBA))

8R. Rao, CSE 322

The Chomsky Hierarchy – Then & Now…

Reg

CFLs

CSLs

T-recognizable

Not T-recognizable

Then (1950s) Now

U.S. interventionism in
the developing world

Political economy
of human rights

Propaganda role
of corporate

media

Noam Chomsky

9R. Rao, CSE 322

Final Review

✦ Details regarding the Final Exam
➭When: This Friday, Dec. 14, 2001 from 8:30-10:20 a.m.
➭Where: This classroom MGH 231.
➭What will it cover?
➧ Chapters 0-4 and Theorem 5.1 (example of reducibility)

➧ Emphasis will be on material covered after midterm
(Chapter 2 and beyond)

➧ You may bring 1 page of notes (8 ½” x 11” sheet!)
➧ Approximately 6 questions

➭ How do I ace it?
➧ Practice, practice, practice!
➧ See class website for practice problems

10R. Rao, CSE 322

Review of Chapters 0-1

✦ See Midterm Review Slides
➭ Emphasis on:
➧ Sets, strings, and languages
➧ Operations on strings/languages (concat, *, union, etc)
➧ Lexicographic ordering of strings
➧ DFAs and NFAs: definitions and how they work
➧ Regular languages and properties
➧ Regular expressions and GNFAs (see lecture slides)
➧ Pumping lemma for regular languages and showing

nonregularity

11R. Rao, CSE 322

Context-Free Grammars (CFGs)

✦ CFG G = (V, Σ, R, S)
➭ Variables, Terminals, Rules, Start variable
➭ uAv yields uwv if A → w is a rule in G: Written as uAv ⇒ uwv
➭ u ⇒* v if u yields v in 0, 1, or more steps
➭ L(G) = {w | S ⇒* w}
➭ CFGs for regular languages: Convert DFA to a CFG (Create

variables for states and rules to simulate transitions)

✦ Ambiguity: Grammar G is ambiguous if G has two or more
parse trees for some string w in L(G)
➭ See lecture notes/text/homework for examples

✦ Closure properties of Context-Free languages
➭ Closed under ∪, concat, * but not ∩ or complementation.
➭ See homework and lecture slides

12R. Rao, CSE 322

Pushdown Automata (PDA)

✦ PDA P = (Q, Σ, Γ, δ, q0, F)
➭ Q = set of states
➭ Σ = input alphabet
➭ Γ = stack alphabet
➭ q0 = start state
➭ F ⊆ Q = set of accept states
➭ Transition function δ: Q × Σε × Γε → Pow(Q × Γε)
➭ (current state, next input symbol, popped symbol) →

{set of (next state, pushed symbol)}
➭ Input/popped/pushed symbol can be ε

✦ Example PDAs for:
➭ {w#wR| w ∈ {0,1}*}, {wwR| w ∈ {0,1}*}, Palindromes

13R. Rao, CSE 322

Context-Free Languages: Main Results

✦ CFGs and PDAs are equivalent in computational power
➭ Generate/recognize the same class of languages (CFLs)
1. If L = L(G) for some CFG G, then L = L(M) for some PDA M

➧ Know how to convert a given CFG to a PDA
2. If L = L(M) for some PDA M, then L = L(G) for some CFG G

➧ Be familiar with the construction – no need to memorize the
induction proof

✦ Pumping Lemma for CFLs
➭ Know the exact statement: L CFL ⇒ ∃p s.t. ∀s in L s.t. |s| ≥ p,

∃ u, v, x, y, and z s.t. s = uvxyz and:
1. uvixyiz ∈ L ∀ i ≥ 0, 2. |vy| ≥ 1, and 3. |vxy| ≤ p.

✦ Using the PL to show languages are not CFLs
➭ E.g. {0n1n0n | n ≥ 0} and {0n | n is a prime number}

14R. Rao, CSE 322

Turing Machines: Definition and Operation

✦ TM M = (Q, Σ, Γ, δ, q0, qACC, qREJ)
➭ Q = set of states
➭ Σ = input alphabet not containing blank symbol “_”
➭ Γ = tape alphabet containing blank “_”, all symbols in Σ, plus

possible temporary variables such as X, Y, etc.
➭ q0 = start state
➭ qACC = accept and halt state
➭ qREJ = reject and halt state
➭ Transition function δ: Q × Γ → Q × Γ × {L, R}

✦ δ(current state, symbol under the head) = (next state, symbol to
write over current symbol, direction of head movement)
➭ Configurations of a TM, definition of language L(M) of a TM M

15R. Rao, CSE 322

Decidable versus Recognizable Languages

✦ A language is Turing-recognizable if there is a Turing
machine M such that L(M) = L
➭ For all strings in L, M halts in state qACC
➭ For strings not in L, M may either halt in qREJ or loop forever

✦ A language is decidable if there is a “decider” Turing
machine M that halts on all inputs such that L(M) = L
➭ For all strings in L, M halts in state qACC
➭ For all strings not in L, M halts in state qREJ

✦ Showing a language is decidable by construction:
➭ Implementation level description of deciders
➭ E.g. {0n1n0n | n ≥ 0}, {0n | n = m2 for some integer m}, see text

16R. Rao, CSE 322

Equivalence of TM Types & Church-Turing Thesis

✦ Varieties of TMs: Know the definition, operation, and idea
behind proof of equivalence with standard TM
➭ Multi-Tape TMs: TM with k tapes and k heads
➭ Nondeterministic TMs (NTMs)

➧ Decider if all branches halt on all inputs
➭ Enumerator TM for L: Prints all strings in L (in any order,

possibly with repetitions) and only the strings in L

✦ Can use any of these variants for showing a language is
Turing-recognizable or decidable

✦ Church-Turing Thesis: Any formal definition of
“algorithms” or “programs” is equivalent to Turing machines

17R. Rao, CSE 322

Decidable Problems

✦ Any problem can be cast as a language membership problem
➭ Does DFA D accept input w? Equivalent to:

Is <D,w> in ADFA = {<D,w> | D is a DFA that accepts input w}?

✦ Decidable problems concerning languages and machines:
➭ ADFA
➭ ANFA = {<N,w> | N is a NFA that accepts input w}
➭ AREX = {<R,w> | R is a reg. exp. that generates string w}
➭ Aempty-DFA = {<D> | D is a DFA and L(D) = ∅}
➭ AEqual-DFA = {<C,D> | C and D are DFAs and L(C) = L(D)}
➭ ACFG = {<G,w> | G is a CFG that generates string w}
➭ Aempty-CFG = {<G> | G is a CFG and L(G) = ∅}

18R. Rao, CSE 322

Undecidability, Reducibility, Unrecognizability

✦ ATM = {<M,w> | M is a TM and M accepts w} is Turing-
recognizable but not decidable (Proof by diagonalization)

✦ To show a problem A is undecidable, reduce ATM to A
➭ Show that if A was decidable, then you can use the decider for

A as a subroutine to decide ATM
➭ E.g. Halting problem = “Does a program halt for an input or

go into an infinite loop?”
➭ Can show that the Halting problem is undecidable by reducing

ATM to AH = { <M,w> | TM M halts on input w}

✦ A is decidable iff A and A are both Turing-recognizable

➭ Corollary: ATM and AH are not Turing-recognizable

19R. Rao, CSE 322

I believe the
Final exam is

decidable!

I believe the world’s
problems are

politically decidable.

I believe my next
movie will be

unrecognizable.

Good luck & have
a great break!

