### Recap of Undecidability Proof

- ★ The Question: Are there languages that are not decidable by any Turing machine (TM)?
  - ❖ I.e. Are there problems that cannot be solved by any algorithm?
- **♦** Consider the language:

```
A_{TM} = \{ <M,w > \mid M \text{ is a TM and M accepts w} \}
(Recall that <A,B,...> is just a string encoding the objects A,B,...>
```

- $\bullet$  What can we say about  $A_{TM}$ ?
  - → A<sub>TM</sub> is Turing-recognizable: Recognizer TM R for A<sub>TM</sub>: On input string <M,w>: Simulate M on w. ACCEPT <M,w> if M halts & accepts w; REJECT <M,w> if M halts & rejects (Loop (& thus reject <M,w>) if M ends up looping).

R accepts <M,w> iff M accepts  $w \Rightarrow L(R) = A_{TM}$ 

R. Rao, CSE 322

### Is A<sub>TM</sub> also decidable?

- No, A<sub>TM</sub> = {<M,w> | M is a TM and M accepts w} is undecidable! 1-slide Proof (by Contradiction):
  - 1. Assume  $A_{TM}$  is decidable  $\Rightarrow$  there's a decider H,  $L(H) = A_{TM}$
  - H on <M,w> = ACC if M accepts w
     REJ if M rejects w (halts in q<sub>REJ</sub> or loops on w)
  - Construct new TM D: On input <M>,
     Simulate H on <M,<M>> (here, w = <M>)
     If H accepts, then REJ input <M>
     If H rejects, then ACC input <M>
  - 4. What happens when D gets <D> as input?
    D rejects <D> if H accepts <D, <D>> if D accepts <D>
    D accepts <D> if H rejects <D, <D>> if D rejects <D>

Contradiction! D cannot exist  $\Rightarrow$  H cannot exist

Therefore,  $A_{TM}$  is not a decidable language.

# Undecidability Proof uses Diagonalization



D on <M $_i>$  accepts if and only if M $_i$  on <M $_i>$  rejects. So, D on <D> will accept if and only if D on <D> rejects! A contradiction  $\Rightarrow$  H cannot exist!

R. Rao, CSE 322 3

# One Last Concept: Reducibility

- → How do we show a new problem A is undecidable?
  ⇒ Use diagonalization again? Yes, but too tedious.
- ◆ Easy Proof: Show that A<sub>TM</sub> is <u>reducible to</u> the new problem A
  - ❖ What does this mean and how do we show this?
- ◆ Show that if A was decidable, then you can use the decider for A as a *subroutine* to decide A<sub>TM</sub>
   ❖ A contradiction, therefore A must also be undecidable

R. Rao, CSE 322 4

#### The Halting Problem is Undecidable (Turing, 1936)

- ◆ Halting Problem: Does TM M halt on input w?
  - $\Rightarrow$  Equivalent language:  $A_H = \{ \langle M, w \rangle \mid TM M \text{ halts on input } w \}$
  - $\Rightarrow$  Need to show  $A_H$  is undecidable
  - $\Rightarrow$  We know  $A_{TM} = \{ \langle M, w \rangle \mid TM M \text{ accepts } w \}$  is undecidable
- ♦ Show  $A_{TM}$  is reducible to  $A_H$  (Theorem 5.1 in text)
  - $\Rightarrow$  Suppose  $A_H$  is decidable  $\Rightarrow$  there's a decider  $M_H$  for  $A_H$
  - ⇒ Then, we can construct a decider  $D_{TM}$  for  $A_{TM}$ : On input <M,w>, run  $M_H$  on <M,w>.
    - If M<sub>H</sub> rejects, then REJ (this takes care of M looping on w)
    - If M<sub>H</sub> accepts, then simulate M on w until M halts
    - If M accepts, then ACC input <M,w>; else REJ

 $L(D_{TM}) = A_{TM} \Longrightarrow A_{TM} \text{ is decidable! Contradiction } \Longrightarrow A_{H} \text{ is undecidable}$ 

R. Rao, CSE 322

#### Are There Languages That Are Not Even Recognizable?

- ◆ A<sub>TM</sub> and A<sub>H</sub> are undecidable but Turing-recognizable
  - Are there languages that are not even Turing-recognizable?
- $\bullet$  What happens if both A and  $\overline{A}$  are Turing-recognizable?
  - $\Rightarrow$  There exist TMs M1 and M2 that recognize A and  $\overline{A}$
  - Can construct a decider for A! On input w:
  - 1. Simulate M1 and M2 on w one step at a time, alternating between them.
  - 2. If M1 accepts, then ACC w and halt; if M2 accepts, REJ w and halt.
- $\bullet$  A and  $\overline{A}$  are both Turing-recognizable iff A is decidable
- Corollary:  $\overline{A}_{TM}$  and  $\overline{A}_{H}$  are not Turing-recognizable

 $\Leftrightarrow$  If they were, then  $A_{TM}$  and  $A_{H}$  would be decidable  $_{R.\ Rao,\ CSE\ 322}$ 

# The Chomsky Hierarchy of Languages

Increasing generality

| Language                    | Regular                | Context-Free                              | Decidable                                                                                  | Turing-<br>Recognizable                                |
|-----------------------------|------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------|
| <b>Computational Models</b> | DFA,<br>NFA,<br>RegExp | PDA,<br>CFG                               | Deciders –<br>TMs that<br>halt for all<br>inputs                                           | TMs that<br>may loop for<br>strings not in<br>language |
| Examples                    | (001)*11               | $\{0^n1^n \mid n \ge 0\},$<br>Palindromes | $ \begin{cases} \{0^{n}1^{n}0^{n} \mid \\ n \geq 0\}, \\ A_{DFA}, \\ A_{CFG} \end{cases} $ | $egin{aligned} A_{TM}, \ A_{H} \end{aligned}$          |

(Chomsky also studied context-sensitive languages (CSLs, e.g.  $a^nb^n\,c^n$ ), a subset of decidable languages recognized by linear-bounded automata (LBA))



#### Final Review

- → Details regarding the Final Exam
  - ❖ When: This Friday, Dec. 14, 2001 from 8:30-10:20 a.m.
  - ❖ Where: This classroom MGH 231.
  - ❖ What will it cover?
    - ♦ Chapters 0-4 and Theorem 5.1 (example of reducibility)
    - ▶ Emphasis will be on material covered after midterm (Chapter 2 and beyond)
    - ♦ You may bring 1 page of notes (8 ½" x 11" sheet!)
    - ♦ Approximately 6 questions
  - ⇒ How do I ace it?
    - ▶ Practice, practice!
    - ♦ See class website for practice problems

R. Rao, CSE 322

#### Review of Chapters 0-1

- ♦ See Midterm Review Slides
  - ⇒ Emphasis on:
    - ♦ Sets, strings, and languages
    - ♦ Operations on strings/languages (concat, \*, union, etc)
    - ▶ Lexicographic ordering of strings
    - ▶ DFAs and NFAs: definitions and how they work
    - ▶ Regular languages and properties
    - ▶ Regular expressions and GNFAs (see lecture slides)
    - Pumping lemma for regular languages and showing nonregularity

#### Context-Free Grammars (CFGs)

- $\bullet$  CFG G = (V,  $\Sigma$ , R, S)
  - ❖ Variables, Terminals, Rules, Start variable
  - $\Rightarrow$  uAv yields uwv if A  $\rightarrow$  w is a rule in G: Written as uAv  $\Rightarrow$  uwv
  - $\Rightarrow$  u  $\Rightarrow$ \* v if u yields v in 0, 1, or more steps
  - $\Rightarrow$  L(G) = {w | S  $\Rightarrow$ \* w}
  - ⇒ CFGs for regular languages: Convert DFA to a CFG (Create variables for states and rules to simulate transitions)
- → Ambiguity: Grammar G is ambiguous if G has two or more parse trees for some string w in L(G)
  - See lecture notes/text/homework for examples
- → Closure properties of Context-Free languages
  - $\Rightarrow$  Closed under  $\cup$ , concat, \* but not  $\cap$  or complementation.
  - See homework and lecture slides

R. Rao, CSE 322

# Pushdown Automata (PDA)

```
♦ PDA P = (Q, Σ, Γ, δ, q_0, F)
```

- $\Rightarrow$  Q = set of states
- $\Rightarrow \Sigma = \text{input alphabet}$
- $\Rightarrow$   $\Gamma$  = stack alphabet
- $\Rightarrow$   $q_0 = \text{start state}$
- $\Rightarrow$  F  $\subseteq$  Q = set of accept states
- $\Rightarrow \text{ Transition function } \delta \colon \mathbf{Q} \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \operatorname{Pow}(\mathbf{Q} \times \Gamma_{\varepsilon})$
- $\Rightarrow$  Input/popped/pushed symbol can be  $\epsilon$
- **♦** Example PDAs for:
  - $\Rightarrow$  {w#w<sup>R</sup>| w ∈ {0,1}\*}, {ww<sup>R</sup>| w ∈ {0,1}\*}, Palindromes

### Context-Free Languages: Main Results

- CFGs and PDAs are equivalent in computational power
  - ⇒ Generate/recognize the same class of languages (CFLs)
  - 1. If L = L(G) for some CFG G, then L = L(M) for some PDA M
    - ▶ Know how to convert a given CFG to a PDA
  - 2. If L = L(M) for some PDA M, then L = L(G) for some CFG G
    - ♦ Be familiar with the construction no need to memorize the induction proof
- ◆ Pumping Lemma for CFLs
  - ⇒ Know the exact statement: L CFL ⇒  $\exists p \text{ s.t. } \forall s \text{ in L s.t. } |s| \ge p$ ,  $\exists u, v, x, y, \text{ and } z \text{ s.t. } s = uvxyz \text{ and:}$ 1.  $uv^i x v^i z \in L \ \forall i \ge 0$ , 2.  $|vy| \ge 1$ , and 3.  $|vxy| \le p$ .
- Using the PL to show languages are not CFLs
  - $\Rightarrow$  E.g.  $\{0^n1^n0^n \mid n \ge 0\}$  and  $\{0^n \mid n \text{ is a prime number}\}$

R. Rao, CSE 322

13

# Turing Machines: Definition and Operation

- → TM M = (Q, Σ, Γ, δ,  $q_0$ ,  $q_{ACC}$ ,  $q_{REJ}$ )
  - $\Rightarrow$  Q = set of states
  - $\Rightarrow$   $\Sigma$  = input alphabet not containing blank symbol "\_"
  - $\Rightarrow$   $\Gamma$  = tape alphabet containing blank "\_", all symbols in  $\Sigma$ , plus possible temporary variables such as X, Y, etc.
  - $\Rightarrow$   $q_0 = start state$
  - $\Rightarrow$   $q_{ACC} =$  accept and halt state
  - $\Rightarrow$   $q_{REJ} = reject$  and halt state
  - $\Rightarrow$  Transition function  $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$
- $\delta$ (current state, symbol under the head) = (next state, symbol to write over current symbol, direction of head movement)
  - Configurations of a TM, definition of language L(M) of a TM M

# Decidable versus Recognizable Languages

- ♦ A language is Turing-recognizable if there is a Turing machine M such that L(M) = L
  - $\Rightarrow$  For all strings in L, M halts in state  $q_{ACC}$
  - $\Rightarrow$  For strings not in L, M may either halt in  $q_{REI}$  or loop forever
- ◆ A language is decidable if there is a "decider" Turing machine M that halts on all inputs such that L(M) = L
  - $\Rightarrow$  For all strings in L, M halts in state  $q_{ACC}$
  - $\Rightarrow$  For all strings not in L, M halts in state  $q_{REJ}$
- **♦** Showing a language is decidable by construction:
  - ⇒ Implementation level description of deciders
  - $\Rightarrow$  E.g.  $\{0^n1^n0^n \mid n \ge 0\}$ ,  $\{0^n \mid n = m^2 \text{ for some integer } m\}$ , see text

R. Rao, CSE 322

#### Equivalence of TM Types & Church-Turing Thesis

- ◆ Varieties of TMs: Know the definition, operation, and idea behind proof of equivalence with standard TM
  - ⇒ Multi-Tape TMs: TM with k tapes and k heads
  - ❖ Nondeterministic TMs (NTMs)
    - ▶ Decider if all branches halt on all inputs
  - ⇒ Enumerator TM for L: Prints all strings in L (in any order, possibly with repetitions) and only the strings in L
- ◆ Can use any of these variants for showing a language is Turing-recognizable or decidable
- <u>Church-Turing Thesis</u>: Any formal definition of "algorithms" or "programs" is equivalent to Turing machines

#### **Decidable Problems**

- Any problem can be cast as a language membership problem
   Does DFA D accept input w? Equivalent to:
   Is <D,w> in A<sub>DFA</sub> = {<D,w> | D is a DFA that accepts input w}?
- → Decidable problems concerning languages and machines:
  - $\Rightarrow A_{DFA}$
  - $\Rightarrow$  A<sub>NFA</sub> = {<N,w> | N is a NFA that accepts input w}
  - $\Rightarrow$  A<sub>REX</sub> = {<R,w> | R is a reg. exp. that generates string w}
  - $\Rightarrow$  A<sub>empty-DFA</sub> = {<D> | D is a DFA and L(D) =  $\varnothing$ }
  - $\Rightarrow A_{Equal\text{-}DFA} = \{ \langle C, D \rangle \mid C \text{ and } D \text{ are DFAs and } L(C) = L(D) \}$
  - $\Rightarrow$  A<sub>CFG</sub> = {<G,w> | G is a CFG that generates string w}
  - $\Rightarrow$  A<sub>empty-CFG</sub> = {<G> | G is a CFG and L(G) =  $\emptyset$ }

R. Rao, CSE 322

#### Undecidability, Reducibility, Unrecognizability

- → A<sub>TM</sub> = {<M,w> | M is a TM and M accepts w} is Turing-recognizable but not decidable (Proof by diagonalization)
- ◆ To show a problem A is undecidable, reduce A<sub>TM</sub> to A
  - ⇒ Show that if A was decidable, then you can use the decider for A as a *subroutine* to decide A<sub>TM</sub>
  - ⇒ E.g. Halting problem = "Does a program halt for an input or go into an infinite loop?"
  - $\Rightarrow$  Can show that the Halting problem is undecidable by reducing  $A_{TM}$  to  $A_{H} = \{ \langle M, w \rangle \mid TM | M \text{ halts on input } w \}$
- $\bullet$  A is decidable iff A and  $\overline{A}$  are both Turing-recognizable
  - $\Rightarrow$  Corollary:  $\overline{A}_{TM}$  and  $\overline{A}_{H}$  are not Turing-recognizable

