Recap of Undecidability Proof - ★ The Question: Are there languages that are not decidable by any Turing machine (TM)? - ❖ I.e. Are there problems that cannot be solved by any algorithm? - **♦** Consider the language: ``` A_{TM} = \{ <M,w > \mid M \text{ is a TM and M accepts w} \} (Recall that <A,B,...> is just a string encoding the objects A,B,...> ``` - \bullet What can we say about A_{TM} ? - → A_{TM} is Turing-recognizable: Recognizer TM R for A_{TM}: On input string <M,w>: Simulate M on w. ACCEPT <M,w> if M halts & accepts w; REJECT <M,w> if M halts & rejects (Loop (& thus reject <M,w>) if M ends up looping). R accepts <M,w> iff M accepts $w \Rightarrow L(R) = A_{TM}$ R. Rao, CSE 322 ### Is A_{TM} also decidable? - No, A_{TM} = {<M,w> | M is a TM and M accepts w} is undecidable! 1-slide Proof (by Contradiction): - 1. Assume A_{TM} is decidable \Rightarrow there's a decider H, $L(H) = A_{TM}$ - H on <M,w> = ACC if M accepts w REJ if M rejects w (halts in q_{REJ} or loops on w) - Construct new TM D: On input <M>, Simulate H on <M,<M>> (here, w = <M>) If H accepts, then REJ input <M> If H rejects, then ACC input <M> - 4. What happens when D gets <D> as input? D rejects <D> if H accepts <D, <D>> if D accepts <D> D accepts <D> if H rejects <D, <D>> if D rejects <D> Contradiction! D cannot exist \Rightarrow H cannot exist Therefore, A_{TM} is not a decidable language. # Undecidability Proof uses Diagonalization D on <M $_i>$ accepts if and only if M $_i$ on <M $_i>$ rejects. So, D on <D> will accept if and only if D on <D> rejects! A contradiction \Rightarrow H cannot exist! R. Rao, CSE 322 3 # One Last Concept: Reducibility - → How do we show a new problem A is undecidable? ⇒ Use diagonalization again? Yes, but too tedious. - ◆ Easy Proof: Show that A_{TM} is <u>reducible to</u> the new problem A - ❖ What does this mean and how do we show this? - ◆ Show that if A was decidable, then you can use the decider for A as a *subroutine* to decide A_{TM} ❖ A contradiction, therefore A must also be undecidable R. Rao, CSE 322 4 #### The Halting Problem is Undecidable (Turing, 1936) - ◆ Halting Problem: Does TM M halt on input w? - \Rightarrow Equivalent language: $A_H = \{ \langle M, w \rangle \mid TM M \text{ halts on input } w \}$ - \Rightarrow Need to show A_H is undecidable - \Rightarrow We know $A_{TM} = \{ \langle M, w \rangle \mid TM M \text{ accepts } w \}$ is undecidable - ♦ Show A_{TM} is reducible to A_H (Theorem 5.1 in text) - \Rightarrow Suppose A_H is decidable \Rightarrow there's a decider M_H for A_H - ⇒ Then, we can construct a decider D_{TM} for A_{TM} : On input <M,w>, run M_H on <M,w>. - If M_H rejects, then REJ (this takes care of M looping on w) - If M_H accepts, then simulate M on w until M halts - If M accepts, then ACC input <M,w>; else REJ $L(D_{TM}) = A_{TM} \Longrightarrow A_{TM} \text{ is decidable! Contradiction } \Longrightarrow A_{H} \text{ is undecidable}$ R. Rao, CSE 322 #### Are There Languages That Are Not Even Recognizable? - ◆ A_{TM} and A_H are undecidable but Turing-recognizable - Are there languages that are not even Turing-recognizable? - \bullet What happens if both A and \overline{A} are Turing-recognizable? - \Rightarrow There exist TMs M1 and M2 that recognize A and \overline{A} - Can construct a decider for A! On input w: - 1. Simulate M1 and M2 on w one step at a time, alternating between them. - 2. If M1 accepts, then ACC w and halt; if M2 accepts, REJ w and halt. - \bullet A and \overline{A} are both Turing-recognizable iff A is decidable - Corollary: \overline{A}_{TM} and \overline{A}_{H} are not Turing-recognizable \Leftrightarrow If they were, then A_{TM} and A_{H} would be decidable $_{R.\ Rao,\ CSE\ 322}$ # The Chomsky Hierarchy of Languages Increasing generality | Language | Regular | Context-Free | Decidable | Turing-
Recognizable | |-----------------------------|------------------------|---|--|--| | Computational Models | DFA,
NFA,
RegExp | PDA,
CFG | Deciders –
TMs that
halt for all
inputs | TMs that
may loop for
strings not in
language | | Examples | (001)*11 | $\{0^n1^n \mid n \ge 0\},$
Palindromes | $ \begin{cases} \{0^{n}1^{n}0^{n} \mid \\ n \geq 0\}, \\ A_{DFA}, \\ A_{CFG} \end{cases} $ | $egin{aligned} A_{TM}, \ A_{H} \end{aligned}$ | (Chomsky also studied context-sensitive languages (CSLs, e.g. $a^nb^n\,c^n$), a subset of decidable languages recognized by linear-bounded automata (LBA)) #### Final Review - → Details regarding the Final Exam - ❖ When: This Friday, Dec. 14, 2001 from 8:30-10:20 a.m. - ❖ Where: This classroom MGH 231. - ❖ What will it cover? - ♦ Chapters 0-4 and Theorem 5.1 (example of reducibility) - ▶ Emphasis will be on material covered after midterm (Chapter 2 and beyond) - ♦ You may bring 1 page of notes (8 ½" x 11" sheet!) - ♦ Approximately 6 questions - ⇒ How do I ace it? - ▶ Practice, practice! - ♦ See class website for practice problems R. Rao, CSE 322 #### Review of Chapters 0-1 - ♦ See Midterm Review Slides - ⇒ Emphasis on: - ♦ Sets, strings, and languages - ♦ Operations on strings/languages (concat, *, union, etc) - ▶ Lexicographic ordering of strings - ▶ DFAs and NFAs: definitions and how they work - ▶ Regular languages and properties - ▶ Regular expressions and GNFAs (see lecture slides) - Pumping lemma for regular languages and showing nonregularity #### Context-Free Grammars (CFGs) - \bullet CFG G = (V, Σ , R, S) - ❖ Variables, Terminals, Rules, Start variable - \Rightarrow uAv yields uwv if A \rightarrow w is a rule in G: Written as uAv \Rightarrow uwv - \Rightarrow u \Rightarrow * v if u yields v in 0, 1, or more steps - \Rightarrow L(G) = {w | S \Rightarrow * w} - ⇒ CFGs for regular languages: Convert DFA to a CFG (Create variables for states and rules to simulate transitions) - → Ambiguity: Grammar G is ambiguous if G has two or more parse trees for some string w in L(G) - See lecture notes/text/homework for examples - → Closure properties of Context-Free languages - \Rightarrow Closed under \cup , concat, * but not \cap or complementation. - See homework and lecture slides R. Rao, CSE 322 # Pushdown Automata (PDA) ``` ♦ PDA P = (Q, Σ, Γ, δ, q_0, F) ``` - \Rightarrow Q = set of states - $\Rightarrow \Sigma = \text{input alphabet}$ - \Rightarrow Γ = stack alphabet - \Rightarrow $q_0 = \text{start state}$ - \Rightarrow F \subseteq Q = set of accept states - $\Rightarrow \text{ Transition function } \delta \colon \mathbf{Q} \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \operatorname{Pow}(\mathbf{Q} \times \Gamma_{\varepsilon})$ - \Rightarrow Input/popped/pushed symbol can be ϵ - **♦** Example PDAs for: - \Rightarrow {w#w^R| w ∈ {0,1}*}, {ww^R| w ∈ {0,1}*}, Palindromes ### Context-Free Languages: Main Results - CFGs and PDAs are equivalent in computational power - ⇒ Generate/recognize the same class of languages (CFLs) - 1. If L = L(G) for some CFG G, then L = L(M) for some PDA M - ▶ Know how to convert a given CFG to a PDA - 2. If L = L(M) for some PDA M, then L = L(G) for some CFG G - ♦ Be familiar with the construction no need to memorize the induction proof - ◆ Pumping Lemma for CFLs - ⇒ Know the exact statement: L CFL ⇒ $\exists p \text{ s.t. } \forall s \text{ in L s.t. } |s| \ge p$, $\exists u, v, x, y, \text{ and } z \text{ s.t. } s = uvxyz \text{ and:}$ 1. $uv^i x v^i z \in L \ \forall i \ge 0$, 2. $|vy| \ge 1$, and 3. $|vxy| \le p$. - Using the PL to show languages are not CFLs - \Rightarrow E.g. $\{0^n1^n0^n \mid n \ge 0\}$ and $\{0^n \mid n \text{ is a prime number}\}$ R. Rao, CSE 322 13 # Turing Machines: Definition and Operation - → TM M = (Q, Σ, Γ, δ, q_0 , q_{ACC} , q_{REJ}) - \Rightarrow Q = set of states - \Rightarrow Σ = input alphabet not containing blank symbol "_" - \Rightarrow Γ = tape alphabet containing blank "_", all symbols in Σ , plus possible temporary variables such as X, Y, etc. - \Rightarrow $q_0 = start state$ - \Rightarrow $q_{ACC} =$ accept and halt state - \Rightarrow $q_{REJ} = reject$ and halt state - \Rightarrow Transition function $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ - δ (current state, symbol under the head) = (next state, symbol to write over current symbol, direction of head movement) - Configurations of a TM, definition of language L(M) of a TM M # Decidable versus Recognizable Languages - ♦ A language is Turing-recognizable if there is a Turing machine M such that L(M) = L - \Rightarrow For all strings in L, M halts in state q_{ACC} - \Rightarrow For strings not in L, M may either halt in q_{REI} or loop forever - ◆ A language is decidable if there is a "decider" Turing machine M that halts on all inputs such that L(M) = L - \Rightarrow For all strings in L, M halts in state q_{ACC} - \Rightarrow For all strings not in L, M halts in state q_{REJ} - **♦** Showing a language is decidable by construction: - ⇒ Implementation level description of deciders - \Rightarrow E.g. $\{0^n1^n0^n \mid n \ge 0\}$, $\{0^n \mid n = m^2 \text{ for some integer } m\}$, see text R. Rao, CSE 322 #### Equivalence of TM Types & Church-Turing Thesis - ◆ Varieties of TMs: Know the definition, operation, and idea behind proof of equivalence with standard TM - ⇒ Multi-Tape TMs: TM with k tapes and k heads - ❖ Nondeterministic TMs (NTMs) - ▶ Decider if all branches halt on all inputs - ⇒ Enumerator TM for L: Prints all strings in L (in any order, possibly with repetitions) and only the strings in L - ◆ Can use any of these variants for showing a language is Turing-recognizable or decidable - <u>Church-Turing Thesis</u>: Any formal definition of "algorithms" or "programs" is equivalent to Turing machines #### **Decidable Problems** - Any problem can be cast as a language membership problem Does DFA D accept input w? Equivalent to: Is <D,w> in A_{DFA} = {<D,w> | D is a DFA that accepts input w}? - → Decidable problems concerning languages and machines: - $\Rightarrow A_{DFA}$ - \Rightarrow A_{NFA} = {<N,w> | N is a NFA that accepts input w} - \Rightarrow A_{REX} = {<R,w> | R is a reg. exp. that generates string w} - \Rightarrow A_{empty-DFA} = {<D> | D is a DFA and L(D) = \varnothing } - $\Rightarrow A_{Equal\text{-}DFA} = \{ \langle C, D \rangle \mid C \text{ and } D \text{ are DFAs and } L(C) = L(D) \}$ - \Rightarrow A_{CFG} = {<G,w> | G is a CFG that generates string w} - \Rightarrow A_{empty-CFG} = {<G> | G is a CFG and L(G) = \emptyset } R. Rao, CSE 322 #### Undecidability, Reducibility, Unrecognizability - → A_{TM} = {<M,w> | M is a TM and M accepts w} is Turing-recognizable but not decidable (Proof by diagonalization) - ◆ To show a problem A is undecidable, reduce A_{TM} to A - ⇒ Show that if A was decidable, then you can use the decider for A as a *subroutine* to decide A_{TM} - ⇒ E.g. Halting problem = "Does a program halt for an input or go into an infinite loop?" - \Rightarrow Can show that the Halting problem is undecidable by reducing A_{TM} to $A_{H} = \{ \langle M, w \rangle \mid TM | M \text{ halts on input } w \}$ - \bullet A is decidable iff A and \overline{A} are both Turing-recognizable - \Rightarrow Corollary: \overline{A}_{TM} and \overline{A}_{H} are not Turing-recognizable