Midterm Examination

Name: _____

Score: _____

The entire examination is worth 80 points. The values of individual questions are marked. There are five questions.

- 1. $[2 \times 10 \text{ points}]$ Prove or disprove the following for languages A and B:
 - (a) [10 points] If A is regular and $A \cup B$ is regular, then B is regular.

(b) [10 points] Same as part (a) above, except A and B are disjoint.

This examination is open book. You may consult your notes, returned homeworks, homework solutions, and the textbook. You may cite Theorems, Lemmas, and Examples from the book; you may not cite exercises from the book that were not assigned.

- 2. [10 points] For any language L over alphabet $\Sigma = \{0, 1\}$, consider the following language:
 - $MIN(L) = \{x \in L \mid \text{ no proper prefix of } x \text{ is in } L \}$

Intuitively, MIN(L) is the set of minimal strings in L, they have no prefix in L. For example, if $L = 0^*(11+1)$, then $MIN(L) = 0^*1$.

Prove or disprove the following closure property of regular languages: for any regular language L, $\mathrm{MIN}(L)$ is regular.

If you prove your answer by construction, you need not prove that your construction is correct.

3. [10 points] For $a \in \Sigma$ and $w \in \Sigma^*$, $\#_a(w)$ is defined to be the number of occurrences of the symbol a in the string w. For example, $\#_a(abb) = 1$ and $\#_b(abb) = 2$. Consider the following language L:

 $L = \{ w \in \{a, b, c\}^* \mid \#_a(w) + \#_c(w) \text{ is a prime} \}.$

State and prove whether or not L regular. If you give an affirmative answer with a proof by construction, you need not prove that your construction is correct.

4. [10 points] Consider the context-free grammar $G = (V, \Sigma, P, S)$, where $V = \{S, A, B, C\}$, $\Sigma = \{a, b\}$, and P contains the following productions:

$$S \to AB \mid CA$$
$$B \to BC \mid AB$$
$$C \to aB \mid b$$
$$A \to aA \mid a.$$

Give a description (in words or in notation) of L(G).

- 5. $[3 \times 10 \text{ points}]$ Let PAR be the language over the alphabet $\{(,)\}$ consisting of all strings of balanced parenthesis, i.e. each left parenthesis has a matching right parenthesis and pairs of matching parentheses are properly nested and the nesting depth could be arbitrary. For any integer $k \ge 1$, let PAR_k be the language that is a subset of PAR consisting only of strings in which the nesting depth is $\le k$. For example, $(())() \in PAR_2$ and $((())) \notin PAR_2$ but $\in PAR_3$. Both strings are in PAR.
 - (a) [10 points] Prove that PAR is context-free. Be sure to specify all four parts of your context-free grammer.

(b) [10 points] Prove or disprove: PAR is regular.

(c) [10 points] Prove or disprove: for any fixed k, PAR_k is regular.