Equivalence of PDAs and CFGs

In the last lecture, we proved the following theorem by starting with a CFG in Greibach Normal Form and constructing an equivalent PDA.

Theorem 1 If L is a CFL then $L=S(M)$ for some PDA M.

The converse is also true.

Theorem 2 If $L=S(M)$ for some PDA M, then $L=L(G)$ for some CFG G.

Proof Sketch: Let $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}, F\right)$.
The idea is to build a grammar $G=(V, \Sigma, P, S)$ such that $X \stackrel{*}{\Rightarrow} w$ iff on reading string $w \in \Sigma^{*}, X$ is popped off the stack in M.

Case 1: M has one state
Let the state be q. Define the variable set V of the grammar to be Γ. The above condition then translates to:

$$
\begin{equation*}
(q, w, X) \stackrel{*}{\vdash}(q, \varepsilon, \varepsilon) \text { for any } w \in \Sigma^{*} \tag{1}
\end{equation*}
$$

Therefore, $V=\Gamma, S=Z_{0}$, and Σ is of course the same for M and G. The set of productions $P=\{A \rightarrow a \alpha \mid(q, \alpha) \in \delta(q, a, A)\}$, for all $a \in \Sigma \cup\{\varepsilon\}, \alpha \in \Gamma^{*}$ and $A \in \Gamma$. Note that G is not in GNF, to allow for ε-moves in the PDA.

Case 2: M has multiple states
Define the set of variables of G to be $V=\{\langle p X q\rangle \mid p, q \in Q, X \in \Gamma\}$, the goal being to satisfy the following condition:

$$
\begin{equation*}
\langle p X q\rangle \stackrel{*}{\Rightarrow} w \operatorname{iff}(p, w, X) \stackrel{*}{\vdash}(q, \varepsilon, \varepsilon) \text { for any } w \in \Sigma^{*} . \tag{2}
\end{equation*}
$$

So what should the start symbol S of G be? With the above goal in mind, we would need the start symbol to be $\left\langle q_{0} Z_{0} q\right\rangle$, for each $q \in Q$. Instead we pick a new variable S (not in V) and add the following productions to the production set $P: S \rightarrow\left\langle q_{0} Z_{0} q\right\rangle$, for all $q \in Q$. Thus the variable set of G is $V \cup\{S\}$.

Now we need to consider each transition in the δ function to complete the set of production rules P.

We add productions to P as indicated below, for $p, q \in Q, a \in \Sigma \cup\{\varepsilon\}, X \in \Gamma$. For each case, keep in mind the above condition (2) that we want to satisfy.

- If $(q, \varepsilon) \in \delta(p, a, X)$, then add the production $\langle p X q\rangle \rightarrow a$.
- If $(q, \gamma) \in \delta(p, a, X)$, then add the productions $\langle p X r\rangle \rightarrow a\langle q \gamma r\rangle$, for all $r \in Q$.
- If $\left(q, \gamma_{1} \gamma_{2}\right) \in \delta(p, a, X)$, then add the productions $\langle p X r\rangle \rightarrow a\left\langle q \gamma_{1} s\right\rangle\left\langle s \gamma_{2} r\right\rangle$, for all $r, s \in Q$.
- ...
- If $\left(q, \gamma_{1} \gamma_{2} \ldots \gamma_{m}\right) \in \delta(p, a, X)$, then add the productions $\langle p X r\rangle \rightarrow a\left\langle q \gamma_{1} s_{1}\right\rangle\left\langle s_{1} \gamma_{2} s_{2}\right\rangle \ldots\left\langle s_{m-1} \gamma_{m} s_{m}\right\rangle$, for all $s_{1}, s_{2}, \ldots s_{m} \in Q$.

To solidify your understanding of the above construction, do the following exercise:
Give a grammar for the language $S(M)$ where $M=\left(\left\{q_{0}, q_{1}\right\},\{0,1\},\left\{Z_{0}, X\right\}, \delta, q_{0}, Z_{0}, \emptyset\right)$ and δ is given by:

$$
\begin{aligned}
& \delta\left(q_{0}, 1, Z_{0}\right)=\left\{\left(q_{0}, X Z_{0}\right)\right\} \\
& \delta\left(q_{0}, 1, X\right)=\left\{\left(q_{0}, X X\right)\right\} \\
& \delta\left(q_{0}, 0, X\right)=\left\{\left(q_{1}, X\right)\right\} \\
& \delta\left(q_{0}, \varepsilon, Z_{0}\right)=\left\{\left(q_{0}, \varepsilon\right)\right\} \\
& \delta\left(q_{1}, 1, X\right)=\left\{\left(q_{1}, \varepsilon\right)\right\} \\
& \delta\left(q_{1}, 0, Z_{0}\right)=\left\{\left(q_{0}, Z_{0}\right)\right\}
\end{aligned}
$$

