
CSE 322 Lecture Notes

Monday, May 7, 2001

Normalizing CFGs
We would like to be able to simplify a grammar, removing useless symbols and annoying pro-

ductions.

Annoying productions are things like unit productions A ! B, where A;B are variables, or
�-productions, A! � where A is not the start variable. The process for removing these is covered

in the text, Sipser p. 99. These notes will discuss removing useless symbols, which is not covered

in the text.

Suppose you have a grammar G = (V;�; P; S) where V = fS;A;B;Cg, � = fa; bg and P is the

following:
S ! AB j a
A ! a

B ! bB

C ! AB

What is L(G)? By examination, we see that L(G) = fag. But perhaps it would be easier to

determine this from a simpler grammar. We note that B;C are both useless, as neither derive a

terminal string. Moreover, C is not reachable from S. The variable A su�ers from neither of these

problems but is never used in a derivation of a string of terminals. We would like to capture these

pathologies in the de�nition of useful variables.

De�nition 1: Given a CFG G = (V;�; P; S), a variable A 2 V is useful if and only if there exists

w 2 ��, and �; � 2 (V [�)� such that S
�

) �A�
�

) w.

This says that a symbol A is useful i� it participates in some derivation of some string in the

language. Observe that:

(i) useful variables X derive some w 2 ��

(ii) useful variables X are reachable from S.

Note that simply ensuring (i) and (ii) above for each variable does not guarantee that we end

up with only useful variables (the variable A above is a counterexample). Note also that these rules

are analogous to insisting that each state in a DFA is in a path from the start state to some �nal

state.

Lemma 1: Given a CFG G = (V;�; P; S), where L(G) 6= �, there is an equivalent grammar

G0 = (V 0;�; P 0; S) such that for every A 2 V 0; A
�

) w, for some w 2 ��. Equivalent grammar

means that L(G) = L(G0).

Proof: The proof will be constructive. We will build V 0 and from it we de�ne P 0 � P , where

P 0 = fp 2 P j p only uses symbols from (V 0 [�)�g We iteratively build V 0 using the following

algorithm:

1. Initialize V 0 = fA 2 V j A! w is a rule in P , and w 2 ��g.

2. Repeat until there is no change: If A ! � is a rule in P such that � 2 (V 0 [�)�, then add

A to V 0 (that is, V 0 = V 0 [fAg).

1

Claim: This does step (i) above. We are bootstrapping V 0, adding to it variables that we know

will be able to derive strings of terminals using variables already in V 0. For example, on G given

above, the algorithm proceeds as follows: We initalize V 0 = fS;Ag since both clearly derive a string
of terminals. Now we try step two, S never appears on the right side of a rule, and A does not appear

alone, so cannot add to V 0 and the algorithm stops. This gives G0 = (fS;Ag;�; fS ! a;A! ag; S)
Also notice that this gives an algorithm for testing L(G) = �. If S 62 V 0, then L(G) = �, since

no string of terminals is derivable from S. (The reason we stipulate L(G) 6= �, is that otherwise

this algorithm won't produce a correct grammar, since S isn't in the variable set if the language is

empty. However, if L(G) = �, then G0 = (fSg;�; �; S) is a suitable grammar for L(G).)

Lemma 2: Given a CFG G = (V;�; P; S), where L(G) 6= �, there exists an equivalent CFG,

G0 = (V 0;�; P 0; S) such that for every A 2 V 0, there exists �; � 2 (V 0 [�)� with S
�

) �A�:

Proof: Again we give a construction. We build V 0 and then de�ne P 0 = fp 2 P j p uses

symbols from (V 0 [�)�g.

1. Intialize V 0 = fSg

2. Repeat until no change: For every A 2 V 0, if A! �1 j �2 j � � � j �k are productions in P , add
all variables in �1; �2; : : : ; �k to V 0.

This does item (ii) above. From S we add all variables reachable from it, and then variables

reachable from those, and so on. In particular, suppose we applied Lemma 2 to the result G0 from

Lemma 1. Then we intialize V 0 = fSg. There are no variables in the strings S produces, so the

algorithm stops. Note that S ! AB was removed by Lemma 1. Thus the result of applying both

these lemmas is G00 = (fSg;�; fS ! ag; S) which is what we determined it should be.

Individually, neither lemma will produce a grammar with only useful variables. But applying

Lemma 1 and then Lemma 2, does the trick. However, it is important to note that applying Lemma
2 and then Lemma 1 will not necessarily work. On our original grammar, if we apply Lemma 2

�rst then we get: First V 0 = fSg. Then we add A;B to get V 0 = fS;A;Bg. Repeating once more

we get V 0 = fS;A;B;Cg, and therefore, we get back our original grammar. Then applying Lemma

1, gives the grammar G0 as above, which still contains the useless variable A.

2

