PROBLEM SET 7 Due Friday, May 29, 2003, in class

- 1. (a) Show that if G is a context-free grammar in Chomsky normal form, then for any string $w \in L(G)$ of length $n \ge 1$, exactly 2n 1 steps are required for any derivation of w.
 - (b) Convert the grammar from Lewis and Papadimitriou, Problem 3.1.5 (the one that generates strings with an equal number of a's and b's), into Chomsky normal form.
- 2. Lewis and Papadimitriou, Problem 3.5.3.
- 3. Prove the following strengthening of the pumping lemma, where we require that **both** substrings v and y be nonempty when the string w is broken up as uvxyz: If L is a CFL, then there exists an integer $p \ge 1$ such that $\forall w \in L, |w| \ge p$, there exists a way to break down was w = uvxyz, satisfying the conditions:
 - (i) For each $i \ge 0$, $uv^i xy^i z \in L$
 - (ii) $v \neq \epsilon$ and $y \neq \epsilon$
 - (iii) $|vxy| \le p$

(the second condition is the stronger one compared to the version proved in class).

- 4. Use the pumping lemma for context-free languages to show that the following languages are not context-free. (You can use the version proved above if you wish.)
 - (a) $L_1 = \{ww \mid w \in \{a, b\}^*\}$
 - (b) $L_2 = \{a^i b^{i^2} \mid i \ge 1\}$
- 5. Give an example of a language that is **not** context-free and yet satisfies the conditions of the stronger version of the pumping lemma from Problem 3 above. (Note that you must *prove* that the language is not context-free, and if your construction is correct you obviously cannot use the pumping lemma to show this!)