Problem Set 8

Due Friday, June 6, 2003, in class

1. Lewis and Papadimitriou, Problem 3.6.2.
2. Consider Lemma 3.7.1 on page 170 of Lewis and Papadimitriou which gives a bottom-up way of converting grammars into PDAs. Fill in the details of the formal inductive proof of the Claim in that Lemma, namely the statement: "For any $x \in \Sigma^{*}$ and $\gamma \in \Gamma^{*},(p, x, \gamma) \vdash^{*}{ }_{M}$ (p, ϵ, S) if and only if $S \stackrel{R}{\Rightarrow}_{G} \gamma^{R} x$."
3. Show that recursively enumerable (i.e. Turing-recognizable) languages are closed under union, intersection, and concatenation.
4. Give an informal English description of a Turing machine that can decide membership in the language MUL $=\left\{a^{m} b^{n} c^{m n} \mid m, n \geq 1\right\}$. (Note that your Turing machine should be a decider, i.e., halt on all inputs.)
5. Let a k-PDA be a pushdown automaton that has k stacks. Thus a 0 -PDA is an NFA and a 1 -PDA is a conventional PDA. Since there are CFLs that are not regular, you already know that 1-PDAs are more powerful than 0-PDAs. Show that 2-PDAs are more powerful than 1-PDAs. (Hint: Argue how a 2-PDA can simulate a Turing machine.)
6. * (Extra credit) Assume that the language $A_{\mathrm{TM}}=\{\langle M, w\rangle \mid M$ is a TM that accepts $w\}$ is undecidable. Then, show that $A L L_{\mathrm{TM}}=\left\{\langle M\rangle \mid M\right.$ is a TM and $\left.L(M)=\Sigma^{*}\right\}$ is undecidable.
