CSE 322: Introduction to Formal Models in Computer Science
Assignment \#4
October 26, 2005
due: Friday, November 4

1. Use only closure results (no pumping lemma) to prove that the language

$$
A=\left\{0^{k} 1^{m} 2^{n} \mid(k=m) \vee(m=n)\right\}
$$

over the alphabet $\Sigma=\{0,1,2\}$ is not regular.
2. Prove that the language $L=\left\{0^{m} 1^{n} \mid m\right.$ is a multiple of $\left.n\right\}$ over the alphabet $\Sigma=$ $\{0,1\}$ is not regular.
3. Problem 1.46(c) [1st Ed: Problem 1.23(d)].
4. Prove that the language $L=\left\{w t w\left|w, t \in\{0,1\}^{*} \&\right| t|>0 \&| w \mid>0\right\}$ is not regular.
5. Prove that the language

$$
\begin{aligned}
& T=\{x \# y \mid x \text { is the binary representation of } r \\
& \quad \& y \text { is the binary representation of } q \& q=3 r\}
\end{aligned}
$$

over the alphabet $\Sigma=\{0,1, \#\}$ is not regular. Now you know why Assignment 1 , problem 6 used such a funny representation for its arithmetic.

