Problem Set 4
Due Friday, February 4, 2005, in class
Reading assignment: Handouts on Myhill-Nerode theorem and DFA minimization.
There are SIX questions, including an extra credit problem. Each question is worth $\mathbf{1 2}$ points, except the extra credit problem which is worth 10 points.

1. Are minimal state NFAs unique for every regular language? Justify your answer.
2. Consider the DFA $M=(\{a, b, c, d, e, f, g, h, i\},\{0,1\}, \delta, a,\{c, f, i\})$ where the transition function $\delta$ is given by the table:

|  | 0 | 1 |
| :--- | :--- | :--- |
| $a$ | $b$ | $e$ |
| $b$ | $c$ | $f$ |
| $c$ | $d$ | $h$ |
| $d$ | $e$ | $h$ |
| $e$ | $f$ | $i$ |
| $f$ | $g$ | $b$ |
| $g$ | $h$ | $b$ |
| $h$ | $i$ | $c$ |
| $i$ | $a$ | $e$ |

Find the minimum-state DFA that is equivalent to $M$.
3. For an integer $k \geq 1$, define the language $L_{k}$ over alphabet $\Sigma=\{0,1\}$ as follows:

$$
L_{k}=\{x \mid \text { the } k \text { 'th symbol from the right in } x \text { equals } 1\} .
$$

(a) Design an NFA with $k+1$ states that recognizes $L_{k}$.
(b) Prove that no NFA with fewer than $k+1$ states can recognize $L_{k}$.
(c) Prove that every DFA that recognizes $L_{k}$ must have at least $2^{k}$ states. (This shows that the exponential blow-up in the subset construction to convert NFAs to DFAs is sometimes inherent and unavoidable.)
4. Let $\Sigma$ be an arbitrary alphabet and $a$ any string in $\Sigma^{*}$. Define the language $\operatorname{Suf}_{a}=\{x a \mid x \in$ $\left.\Sigma^{*}\right\}$, i.e., $\operatorname{Suf}_{a}$ consists of those strings which end with $a$. $\operatorname{Suf}_{a}$ is easily seen to be regular by a simple NFA construction with $|a|+1$ states. How many states does the minimal DFA recognizing $\operatorname{Suf}_{a}$ have? Justify your answer.
5. Prove the following stronger version of the pumping lemma that gives a necessary and sufficient condition for a language to be regular: A language $A \subseteq \Sigma^{*}$ is regular if and only if there exists $p \geq 0$ such that for all $s \in \Sigma^{*}$ with $|s| \geq p$, there exist $u, v, w \in \Sigma^{*}$ such that $s=u v w, v \neq \epsilon$, and for all $z \in \Sigma^{*}$ and $i \geq 0$,

$$
s z \in A \Longleftrightarrow u v^{i} w z \in A .
$$

Hint: Use the Myhill-Nerode theorem for the "if" part.
6. * (Extra Credit)
(a) A subset $T$ of $\mathbb{N}=\{0,1,2, \ldots\}$ is said to be eventually periodic if there exist integers $m \geq 0$ and $p>0$ such that for all $n \geq m, n \in T$ if and only if $n+p \in T$.
Let $L \subseteq\{0\}^{*}$ be a unary language. Prove that $L$ is regular if and only if the set $\left\{n \mid 0^{n} \in L\right\}$, the set of lengths of strings in $L$, is eventually periodic.
(b) Let $L \subseteq\{0\}^{*}$ be an arbitrary unary language (in particular, $L$ need not be regular). Prove that $L^{*}$ is regular.
Hint: Use part (a) above by showing that the length of the shortest non-empty string in $L$ can serve as a period (for the set of lengths of strings in $L^{*}$ ).

