PROBLEM SET 4 Due Friday, February 4, 2005, in class

Reading assignment: Handouts on Myhill-Nerode theorem and DFA minimization.

There are **SIX** questions, including an extra credit problem. Each question is worth **12** points, except the extra credit problem which is worth 10 points.

- 1. Are minimal state NFAs unique for every regular language? Justify your answer.
- 2. Consider the DFA $M = (\{a, b, c, d, e, f, g, h, i\}, \{0, 1\}, \delta, a, \{c, f, i\})$ where the transition function δ is given by the table:

	0	1
a	b	e
b	c	f
c	d	h
d	e	h
e	$\int f$	i
f	g	b
g	h	b
h	i	c
i	a	e

Find the minimum-state DFA that is equivalent to M.

3. For an integer $k \ge 1$, define the language L_k over alphabet $\Sigma = \{0, 1\}$ as follows:

 $L_k = \{x \mid \text{ the } k \text{'th symbol from the right in } x \text{ equals } 1\}.$

- (a) Design an NFA with k + 1 states that recognizes L_k .
- (b) Prove that no NFA with fewer than k + 1 states can recognize L_k .
- (c) Prove that every DFA that recognizes L_k must have at least 2^k states. (This shows that the exponential blow-up in the subset construction to convert NFAs to DFAs is sometimes inherent and unavoidable.)
- 4. Let Σ be an arbitrary alphabet and a any string in Σ^* . Define the language $\operatorname{Suf}_a = \{xa \mid x \in \Sigma^*\}$, i.e., Suf_a consists of those strings which end with a. Suf_a is easily seen to be regular by a simple NFA construction with |a| + 1 states. How many states does the minimal DFA recognizing Suf_a have? Justify your answer.
- 5. Prove the following stronger version of the pumping lemma that gives a necessary and sufficient condition for a language to be regular: A language $A \subseteq \Sigma^*$ is regular **if and only if** there exists $p \ge 0$ such that for all $s \in \Sigma^*$ with $|s| \ge p$, there exist $u, v, w \in \Sigma^*$ such that $s = uvw, v \ne \epsilon$, and for all $z \in \Sigma^*$ and $i \ge 0$,

$$sz \in A \iff uv^i wz \in A$$
.

<u>Hint</u>: Use the Myhill-Nerode theorem for the "if" part.

6. * (Extra Credit)

- (a) A subset T of $\mathbb{N} = \{0, 1, 2, ...\}$ is said to be eventually periodic if there exist integers $m \ge 0$ and p > 0 such that for all $n \ge m$, $n \in T$ if and only if $n + p \in T$. Let $L \subseteq \{0\}^*$ be a unary language. Prove that L is regular if and only if the set $\{n \mid 0^n \in L\}$, the set of lengths of strings in L, is eventually periodic.
- (b) Let L ⊆ {0}* be an arbitrary unary language (in particular, L need not be regular). Prove that L* is regular.
 <u>Hint</u>: Use part (a) above by showing that the length of the shortest non-empty string in L can serve as a period (for the set of lengths of strings in L*).