Problem Set 5
Due Friday, February 18, 2005, in class
Reading assignment: Section 2.1 of Sipser's text, Handout on Chomsky Normal Form conversion. There are SIX questions. Each question is worth $\mathbf{1 0}$ points.

1. Prove that context-free languages are closed under union, concatenation, and Kleene star operation.
2. Give context-free grammars that generate the following languages:
(a) $L_{1}=\left\{a^{i} b^{j} c^{k} d^{\ell} \mid i+j=k+\ell\right\}$
(b) $L_{2}=\{R \mid R$ is a regular expression over $\{a, b\}\}$.
3. (a) Let G be an arbitrary grammar in Chomsky Normal Form. How many steps does it take to derive a string of length $n \geq 1$ in $L(G)$ using the rules of G ?
(b) Convert the following grammar (where S is the start symbol) into Chomsky Normal Form. Show all intermediate steps clearly.

$$
\begin{aligned}
& S \rightarrow a A a|b B b| \epsilon \\
& A \rightarrow C \mid a \\
& B \rightarrow C \mid b \\
& C \rightarrow C E|B C D| \epsilon \\
& D \rightarrow A|B| a b
\end{aligned}
$$

4. Let $G=(\{S, A, B\},\{a, b\}, R, S)$ be the grammar with rules:

$$
\begin{aligned}
& S \rightarrow a A B|a B A| b A A \mid \epsilon \\
& A \rightarrow a S \mid b A A A \\
& B \rightarrow a A B B|a B A B| a B B A \mid b S .
\end{aligned}
$$

Prove that $L(G)$ is the language consisting of all words that have exactly twice as many a 's as b 's.
5. Let $A=\left\{x y \mid x, y \in\{a, b\}^{*}\right.$ and $|x|=|y|$ but $\left.x \neq y\right\}$.
(a) (Tricky!) Construct a context-free grammar that generates the language A.
(b) Draw a parse tree for your grammar that derives the string aabaabba $\in A$.
6. Consider the following natural looking grammar $\mathrm{PROG}=(V, \Sigma, R,\langle\mathrm{STMT}\rangle)$ for a fragment of a programming language:

$$
\begin{aligned}
\Sigma & =\{\text { if, condition, then, else, a }:=1\} \\
V & =\{\langle\text { STMT }\rangle,\langle\text { IF }- \text { THEN }\rangle,\langle\text { IF }- \text { THEN }- \text { ELSE }\rangle,\langle\text { ASSIGN }\rangle\},
\end{aligned}
$$

and PROG has the following rules:

$$
\begin{aligned}
\langle\text { STMT }\rangle & \rightarrow\langle\text { ASSIGN }\rangle|\langle\mathrm{IF}-\mathrm{THEN}\rangle|\langle\mathrm{IF}-\text { THEN }- \text { ELSE }\rangle \\
\langle\mathrm{IF}-\mathrm{THEN}\rangle & \rightarrow \text { if condition then }\langle\text { STMT }\rangle \\
\langle\mathrm{IF}-\mathrm{THEN}-\mathrm{ELSE}\rangle & \rightarrow \text { if condition then }\langle\text { STMT }\rangle \text { else }\langle\text { STMT }\rangle \\
\langle\text { ASSIGN }\rangle & \rightarrow \mathrm{a}:=1
\end{aligned}
$$

(a) Show that PROG is ambiguous. What "programming aspect" does this ambiguity capture?
(b) Give a new unambiguous grammar that generates the same language as PROG. You do not have to prove unambiguity, but informally describe how you are resolving the ambiguity.

