Problem Set 8
Due Friday, March 11, 2005, in class
Reading assignment: Sections 3.1, 3.3, 4.1, 4.2 of Sipser's text.
There are FOUR questions. Each question is worth $\mathbf{1 5}$ points.

1. (a) Show that decidable languages are closed under union, intersection, and complementation.
(b) Show that Turing-recognizable languages are closed under union and intersection.
2. Show using a proof by diagonalization that the set of all infinite sequences over $\{0,1\}$ is uncountable.
3. Let C be a language. Prove that C is Turing-recognizable if and only if there exists a decidable language D such that $C=\{x: \exists y(\langle x, y\rangle \in D)\}$.)
Hint: For the only if part, it might help to think of y as the witness or proof that a string x is accepted by a Turing Machine. So think of what could serve as such a witness.
4. Define the language

$$
A=\{\langle M\rangle \mid M \text { is a DFA that only accepts strings over }\{0,1\} \text { with an odd number of } 1 \text { 's }\} .
$$

Show that A is decidable.
Suggestion: Theorem 4.4 of Sipser's book might be useful.

