Push Down Automaton Atri Rudra May 10

Puzzle of the day Design a context free grammar for the following language: { xy | x,y∈ {0,1}* and |x|=|y| but x≠ y }


```
10/2 things Chomsky hates about CFGs

1. S appears on the RHS of a rule
2. There is a rule of the form A→ XaY

■ Either X or Y ≠ε
3. A→B<sub>1</sub>B<sub>2</sub>...B<sub>k</sub>, k>2
4. A→ε
5. A→B

We will get rid of each condition one by one
```


Step 1: S on RHS • Fix : Add a new start variable S' and • Add rule S' \rightarrow S • S' \rightarrow P • P \rightarrow PQP | Q | ϵ • Q \rightarrow 00 | ϵ

```
Step 2: Non-single terminal on RHS

■ Problem: Rule of the form A→ XaY
■ Fix: Remove old rule and
□ Add a new variable Z and the rules
□ Z→ a, A→ XZY
■ S' → P
■ P→ PQP | Q | ε
■ Q→ 00 | ε
■ Z→ 0
```

```
Step 2: Non-single terminal on RHS

■ Problem: Rule of the form A→ XaY
■ Fix: Remove old rule and
□ Add a new variable Z and the rules
□ Z→a, A→ XZY
■ S' → P
■ P→ PQP | Q | E
■ Q→ ZZ | E
■ Z→ 0
```

```
Step 3: Multiple vars. On RHS

Problem: A \rightarrow B_1B_2...B_k, k > 2
Fix: Remove the old rule and
Add new vars T_2, ... T_{k-1} and the rules
A \rightarrow B_1T_2, T_2 \rightarrow B_2T_3, ... T_{k-1} \rightarrow B_{k-1}B_k
S' \rightarrow P
P \rightarrow PQP \mid Q \mid \epsilon
Q \rightarrow ZZ \mid \epsilon
Z \rightarrow 0
T \rightarrow QP
```

```
Step 3: Multiple vars. On RHS

Problem: A \rightarrow B_1B_2...B_k, k > 2

Fix: Remove the old rule and
Add new vars T_2, ... T_{k-1} and the rules
A \rightarrow B_1T_2, T_2 \rightarrow B_2T_3, ... T_{k-1} \rightarrow B_{k-1}B_k
S' \rightarrow P
P \rightarrow PT_2 \mid Q \mid \epsilon
Q \rightarrow ZZ \mid \epsilon
Z \rightarrow 0
T_2 \rightarrow QP
```



```
What are we losing?

■ Maybe S' ⇒* ε
■ If A→ BC and B→ ε
□ Earlier: A ⇒* C
□ Now: no longer possible
■ The fix: compute ε
□ Set of variables that can derive ε
□ If A→ ε, then put A in ε
□ If B→ w, w∈ε, then put B in ε
```

```
After computing \mathcal{E}

If S' \in \mathcal{E}, then add rule

S' \to \epsilon

For rule A\to BC such that C\in \mathcal{E}

Add rule A\to B

For rule A\to BC such that B\in \mathcal{E}

Add rule A\to C
```

```
Applying the fix to our example

\mathbb{E} = \{ P, Q, S', T_2 \}

\mathbb{S}' \to P

\mathbb{P} \to PT_2 \mid Q \mid E

\mathbb{Q} \to ZZ \mid E

\mathbb{Z} \to 0

\mathbb{T}_2 \to QP

A Rudre, CNE322
```

```
Removing the A \rightarrow \epsilon rules

• \epsilon = \{ P, Q, S', T_2 \}

• S' \rightarrow P

• P \rightarrow PT_2 \mid Q

• Q \rightarrow ZZ

• Z \rightarrow 0

• T_2 \rightarrow QP
```

```
The patchwork

• \mathcal{E} = \{ P, Q, S', T_2 \}

• S' \to \epsilon

• S' \to P

• P \to PT_2 \mid Q

• Q \to ZZ

• Z \to 0

• T_2 \to QP
```

```
The patchwork

• \mathcal{E} = \{ P, Q, S', T_2 \}

• S' \rightarrow \varepsilon

• S' \rightarrow P

• P \rightarrow PT_2 \mid Q \mid P \mid T_2

• Q \rightarrow ZZ

• Z \rightarrow 0

• T_2 \rightarrow QP \mid Q \mid P
```

Step 5: A→ B Fix: Remove the *unit* rules What do we lose ? Say A→B and B→ X (X is not a single variable) Earlier: A⇒ X Now: not possible Patchwork If we knew that A can reach B using unit rules Add a new rule A→ X


```
Completing the patchwork

S' \rightarrow \varepsilon
S' \rightarrow PT_2 \mid ZZ \mid QP
P \rightarrow PT_2 \mid QP \mid ZZ
Q \rightarrow ZZ
Z \rightarrow Q
T<sub>2</sub> \rightarrow QP \mid PT_2 \mid ZZ
D(P) ={ Q,T<sub>2</sub>}
D(P) ={ Q,T<sub>2</sub>}
D(T<sub>2</sub>)=Q,P}, \mathcal{D}(S')={P,Q,T<sub>2</sub>}, \mathcal{D}(Q)=\mathcal{D}(Z)=\emptyset
```

```
Chomsky is finally happy

S' \rightarrow \varepsilon
S' \rightarrow PT_2 \mid ZZ \mid QP
P \rightarrow PT_2 \mid QP \mid ZZ
Q \rightarrow ZZ
Z \rightarrow 0
T<sub>2</sub>\rightarrow QP \mid PT_2 \mid ZZ
```


