Pushdown Automata (PDA)

0 Main Idea: Add a stack to an NFA
© Stack provides potentially unlimited memory to an otherwise
finite memory machine (finite memory = finite no. of states)

e 79
>PDA=NFA+ |=

@ Stack is LIFO (“Last In, First Out”)
< Two operations:
0 “Push” symbol onto top of stack

0 “Pop” symbol from top of stack
R. Rao, CSE 322 1

6 Components of a PDA=(Q, 2, I, 0, q,, F)

0 Q =set of states

2 = input alphabet
New components!
I" = stack alphabet —

4
0
[0 q, = start state
0 F 0O Q =setof accept states
0

Transition function &: Q x . x I, - Pow(Q x ")

< (current state, next input symbol, popped symbol) -
{set of (next state, pushed symbol)}

< Input/popped/pushed symbol can be €

R. Rao, CSE 322 2




When does a PDA accept a string?

0 A PDA M accepts string w = w; w,...w, if and only if there
exists at least one accepting computational path i.e. a
sequence of states r, 1, ..., I,, and strings s, S, ..., S,
(denoting stack contents) such that:

1. ry=q,and s, = € (M starts in q, with empty stack)
2. (r,11,b) B (1;, Wiy, @) (States follow transition rules)
3. s;=at and s;,, =btforsomea,b[I and¢[T *

(M pops “a” from top of stack and pushes “b” onto stack)
4. r, UF (Last state in the sequence is an accept state)

R. Rao, CSE 322 3

On-Board Examples

O PDA for L = {w#wR|w O {0,1}*} (# acts as a “delimiter”)
@ E.g. 040, 1#1, 10#01, 01#10, 1011#1101 O L
< L is a CFL (what is a CFG for it?)
< Recognizing L using a PDA:
O Push each symbol of w onto stack
O On reaching # (middle of the input), pop the stack — this
yields symbols in wR — and compare to rest of input

0 PDA for L, = {wwR| w O {0,1}*}
< Set of all even length palindromes over {0,1}

O Recognizing L, using a PDA:
O Problem: Don’t know the middle of input string
O Solution: Use nondeterminism (&-transition) to guess!

R. Rao, CSE 322 4




