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The pumping lemma for regular languages is nice, but it has one fatal drawback, and that is that it is not a complete
characterization of whether a language is regular. In other words this means that there are languages which are not
regular, but which obey the pumping lemma.

Here we will describe a condition which, unlike the pumping lemma, can be used as a complete test for whether a
language is regular or not. It is called the Myhill-Nerode theorem.

I. TWO EQUIVALENCE RELATIONS

To begin let us start with two useful equivalence relations. The first equivalence relation is defined over any
language. Let A be a language in Σ∗. Then we say that the strings x and y are indistinguishable by A if and only if,
for every string z ∈ Σ∗, either both xz and yz are in the language or both xz and yz are not in the language. When
two strings are indistinguishable with respect to A, we write x ≡A y.

Lets give an example. Consider the language A = {01k|k ≥ 0} ∪ {00}. The two strings 01 and 011 are indistin-
guishable in A. Why? Because 01z is in A iff z ∈ 1∗. Similarly 011z is in A iff z ∈ 1∗. Thus the strings 01z and 011z
are both in A at the same time, or both not in A at the same time.

Now, ≡A is an equivalence relation. Recall that a relation is an equivalence relation if it is reflexive, symmetric,
and transitive. The first of these means that x ≡A x which is clearly true. The second of these means that x ≡A y
iff y ≡A x, which is also clearly true since our definition was symmetric. The final of these means that if x ≡A y and
y ≡A z, then x ≡A z which is the only slightly tricky one, but if you give it a little thought you will see it is true.
Now given that ≡A is an equivalence relation what can we do? Recall that if we have an equivalence relation we can
divide the set the relation is defined over into equivalence classes. These equivalence classes are subsets of the set we
are working with which are disjoint (the intersection of any two is empty) and which are complete (the union of all
of the equivalence classes is the entire set.) In other words equivalence relations give us a way to define equivalence
classes, and these equivalence classes fully partition the set we are working on.

Lets work out an example for the language we considered above A = {01k|k ≥ 0}∪{00} (we work with the alphabet
Σ = {0, 1}. ) It is easy to see, by generalizing our example above, the {01k|k > 0 are equivalent to each other. Note
that 0 is not equivalent over A to 01, since, 00 is in A, but 010 is not in A. Further, using similar reasoning 00 is not
equivalent to 0. Further ε is not equivalent to any other string in A, since there is no portion of A which ends with
arbitrary strings. But ε is equivalent to strings which are not in A. Indeed, all of the elements that are not in A are
equivalent to each other (you should check this.) Thus the equivalence classes of A are {0}, {00}, {01k|k > 0}, and
Σ∗ −A.

Next lets give another equivalence relation, but this time defined over a DFA M . To do this we will need to define
a concept called delta-star. The transition function of a DFA, δ tell us, given a current state, and a symbol, what
new state to transition to. δ∗ tell us, given a current state, and a string, what new state would the DFA end up,
starting at the current state and then reading that particular string. We can define δ∗ inductively. First note that
δ∗ : Q⊗ Σ∗ → Q. Then define this function as

Delta-star definition:
1. Base case: δ∗(q, ε) = q
2. Inductive step: For x ∈ Σ∗ and a ∈ Σ, δ∗(q, xa) = δ(δ∗(q, x), a)

Okay, given the definition of δ∗ we can now begin to define our new equivalence relation. Given a DFA M =
(Q,Σ, δ, q0, F ), we say that two string x and y are indistinguishable, if and only if δ∗(q0, x) = δ∗(q0, y). In other words
the two strings are indistinguishable if, starting at the initial state, one ends up at the same state upon reading either
x or y. If this is true, we write x ≡M y.

Again, it is easy to check that ≡M is and equivalence relation. Thus we can use this equivalence relation to partition
Σ∗ up into equivalence classes as before. Further note that ≡M only has a finite number of equivalence classes, since
the equivalence is defined by ending up in the same state, and there are only a finite number of states for a DFA.
Further note that if the DFA is made up of reachable states, then the number of equivalence classes will just be equal
to the number of states of the machine M .
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II. A LEMMA AND A NEW METHOD FOR PROVING A LANGUAGE NOT REGULAR

Now lets prove a useful lemma relating the equivalence class of a machine M and the language accepted by this
machine, L(M). The lemma is as follows: If A = L(M) for a DFA M , then for any x, y ∈ Σ∗, if x ≡M y then x ≡A y.
Notice that at this point this is only an if statement, not an if and only if (yet!). So why is this true? Lets prove it!

Let A = L(M) and M = (Q,Σ, δ, q0, F ). Therefore w ∈ A if and only if δ∗(q0, w) ∈ F . Suppose also that x ≡M y.
Then δ∗(q0, x) = δ∗(q0, y). Let z ∈ Σ∗. Then δ∗(q0, xz) = δ∗(yz) (since after we get to the state reached by both
x and y the DFA will proceed deterministically.) Therefore xz ∈ A if and only if δ∗(q0, xz) ∈ F . Further since
δ∗(q0, xz) = δ∗(yz) this means that xz ∈ A if and only if δ∗(q0, yz) ∈ F . But δ∗(q0, yz) ∈ F if and only if yz ∈ A.
Therefore xz ∈ A if and only if yz ∈ A. It thus follows that x ≡A y.

What good is this lemma? Well, it tells us something nice. It says that whenever two elements arrive at the same
state in M , they are in the same equivalence class of ≡A. This means that each equivalence class of ≡A is a union
of equivalence classes of ≡M . One nice consequence of this is, since ≡M has equivalence classes which are finite in
number, that we can now show that

If A is regular, then ≡A has a finite number of equivalence classes.

Why is this true? If A is regular, then there is a DFA M which recognizes the language A. Our lemma from above tells
us that ≡A has at most the number of equivalence classes of ≡M (this largest case comes about when ≡A equivalence
classes are identical to the equivalence classes of ≡M .) Since the number of equivalence classes of ≡M is finite, this
implies that the number of equivalence classes of ≡A is finite.

Okay well now that we’ve proved this, what good is it? Well now we have a new method for proving that languages
are not regular! How? Well, again, by contradiction. We proceed by assuming that the language, A, we are considering
is regular. Then if we can show that the number of equivalence classes under ≡A is not finite, then we have proved
a contradiction to our deduction above. To prove that the number of equivalence classes under ≡A is not finite, we
don’t really need to identify all of the equivalence classes: all we really need to do is to provide an infinite sequence
of strings and prove that they are not equivalent to each other.

Lets do an example! Consider the language A = {0n1n|n ≥ 0}. Lets prove that this language is not regular,
using the corollary above. Assume that A is regular and therefore, by the above corollary, it has a finite number of
equivalence classes. Lets examine the sequence of strings x1, x2, . . . where xi = 0i, where i ≥ 1. Let us show that
no two of these are equivalent to each other with respect to A. Consider 0i and 0j where i 6= j. Let z = 1i. Now
0iz = 0i1i which is in A. But 0jz = 0j1i is not in A. Thus these two strings 0i and 0j are not equivalent to each
other. Thus, since the sequence of string x1, x2, . . . is infinite, we have shown that the number of equivalence classes
of A is infinite. This contradicts our assumption that the number of equivalence classes of A is finite. Thus A must
not be regular. Wah-lah.

Okay, so we have a brand spanking new method for showing that a language is not regular. But does this method
provide us anything more than the pumping lemma did? Well the answer to that is the reason I’m blabbing on about
this. This is the fact that, unlike the pumping lemma, this method is always guaranteed to work. The statement of
this is the Myhill-Nerode theorem.

III. MYHILL-NERODE THEOREM

Myhill-Nerode Theorem
A is regular if and only if ≡A has a finite number of equivalence classes. In addition there is a DFA M
with A = L(M) having precisely one state for each equivalence class of ≡A.

We have already proved one direction of this theorem (that if A is regular, then it has a finite number of equivalence
classes under ≡A.) Now lets prove the opposite direction: that if ≡A has a finite number of equivalence classes, then
A is regular. We will do this by our favorite trick, by showing that if ≡A has a finite number of equivalence classes,
then we can construct a DFA M which recognizes A.

Let M = (Q,Σ, δ, q0, F ) be the DFA we are going to construct. Further let A1, A2, . . . , Ar denote the equivalence
classes of ≡A. The Ai are disjoint and partition Σ∗. Define the states of the DFA as Q = {q1, . . . , qr}. Our goal will
be to define the transition function δ and q0 and F such that δ∗(q0, x) = qr if and only if x ∈ Ar.

Lets begin by defining q0. Let q0 = qi such that ε ∈ Ai. In other words, the start state corresponds to the
equivalence class that contains the empty string.

Now lets figure out how to construct the transition function. To see how to do this note that for an Aj and any
a ∈ Σ, for every x, y ∈ Aj , xa and ya are both contained in the same equivalence class of ≡A. Why? Because if
x, y ∈ Aj then xz and yz, z ∈ Σ∗ are either both in A or both not in A. Therefore, in particular if we consider strings
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of the form z = aw, w ∈ Σ∗, then xaw and yaw are either both in A or not both in A. This means that they xa and
ya are in the same equivalence class with respect to ≡A.

Thus to figure out what δ(qj , a) should be, we pick some x ∈ Aj and find the one Ak such that xa ∈ Ak. Then we
set δ(qj , a) = qk. Notice that by our argument above, this will be independent of what x we choose.

Finally we need to pick the accept states. Note that either Aj ⊂ A or Aj ∩ A = ∅ because equivalence classes
stratling A are not possible since they fail the equivalence definition for z = ε appended onto these elements. In
other words if Aj contained elements from A and from Σ∗ − A, then we can pick string x from A and string y from
Σ∗ − A, and then xε is in A buy yε is not in A, contradicting the assumption that Aj is so constructed. Thus we
define F = {qj |Aj ⊆ A}.

It is easy to see that the above DFA recognizes A. A formal proof, which we will forgo, would proceed by induction
to show this.

Thus we have seen that if ≡A has a finite number of equivalence classes, then we can construct a DFA which
recognizes A and thus A is regular. This, along with the other direction proved above proves the Myhill-Nerod
Theorem. Further note that the DFA we constructed has precisely the number of equivalence classes of ≡A states.

Further note that the DFA we have constructed has the minimal number of states possible for a DFA. Why is this
so? Suppose that we have a machine M which accepts the language A. Then we know the equivalence classes of ≡A

are made up of unions of equivalence classes of ≡M . Thus the smallest the number of equivalence classes of ≡M could
be is the number of equivalence classes of ≡A. Since ≡M is the number of (reachable) states in M this implies that
M the smallest number of states is equal to the number of equivalence classes of ≡A. Our construction of a DFA
from the equivalence classes of ≡A has exactly such a number of states and is therefore the smallest DFA which will
accept A.


