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Okay now that we’ve talked a little about context free grammars, a natural question to ask is: is there some sort of
machine which recognizes exactly the context free languages? Well if we relplace “machine” by computational model,
then the answer is yes: nondeterministic pushdown automata recognize exactly the context free languages.

So what is a nondeterministic pushdown automata? Well a nondeterministic pushdown automata is a computational
model a lot like our good friend the nondeterministic finite automata, but with a crucial difference: a pushdown
automata has a memory. Now this isn’t just any sort of memory: a nondeterministic finite automata has a stack
memory. Many of you probably know what a stack is. Well at least all of you have stacked up books on top of each
other. And when you stack books on top of each other, if you don’t allow yourself the Houdini act of pulling out a
book from the middle of stack, your stack of books is a last in, first out procedure. That is the last book that you
put on the top of the stack is the first that you’ll get back if you take a book off the top of the stack. We like to be
fancy and call this LIFO: last in, first out (as opposed to FIFO: first in, first out.)

Okay, so back to pushdown automata. A nondeterministic pushdown automata is like a nondeterministic finite
automata, except that it has a stack around. Now the automata can do things like add new symbols to the top of the
stack, read symbols off the top of the stack, and remove the top element of the stack. This allows a nondeterministic
pushdown automata (NPDA) to have a memory of what it has read before and therefore, we will see, recognize
languages which a DFAs cannot recognize.

Lets give an informal example. Suppose that we wish to design a NPDA which recognizes the non-regular language

L = {wwR|w ∈ {0, 1}∗}.

This language is not regular because, informally, it needs to remember what it has read in order to verify that the
remaining half symbols are the reversal of the first half. Now lets describe informally how a NPDA could recognize
such a language. The machine begins by pushing symbols that it reads onto the stack. After pushing each symbol
onto the stack, nondeterministically guess (i.e. think ε transition) that the middle of the string has been reached. At
each such guess, read the remaining symbols, at each step popping off the top element of the stack and comparing it
with the symbol read. If you get to the end of the string and the stack is empty, and at each step the symbols match,
then you should accept.

We see that the reason the NPDA could recognize the language L was that it could use the stack to store the
partially read string. While a finite automata has a memory which is related to the number of states in the automata,
the pushdown automata has a stack with which it can store any amount of data. Now of course, this memory is in
some way restricted: it is LIFO afterall, so this isn’t necessarily a description of how a full computer (whatever that
means) works, but, none the less, represents and increase in ability to recognizes languages over finite automata.

I. FORMAL DEFINITION

Okay lets get formal (words I’m sure you dread hearing!) A nondeterministic pushdown automaton (NPDA) is
going to be described by our largest tuple of all time, a six tuple! Formally a nondeterministic pushdown automaton
is described by the six tuple (Q,Σ,Γ, δ, q0, F ). These objects are

1. Q is a finite set representing the states of the NPDA.

2. Σ is a finite set which is the input alphabet.

3. Γ is a finite set which is the stack alphabet.

4. δ : Q× Σε × Γε → P (Q× Γε) is the transition function.

5. q0 ∈ Q is the start state.

6. F ⊆ Q is the set of accept states.
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Okay, so all of these objects should be transparent in what they are, except the transition function δ. So lets discuss
δ. First of all lets talk about the input to the transition function. This is Q×Σε × Γε. Recall that Σε = Σ∪ {ε} and
Γε = Σ ∪ {ε}. Okay, so first of all lets talk about the function when it neither of the last two inputs are ε. In this
case the transition function takes as input the current state, the next symbol in the input string, and the top element
of the stack. It then outputs a set of possible new states and new symbols for the top of the stack. Note the the new
top of the stack replaces this the old top of the stack. Now what happens if one of the inputs is ε. If the ε comes
from the input alphabet component of the function, this means that the function does not read a symbol from the
input. Similarly if the ε comes from the stack alphabet part of the function, this means that the function does not
read from the top of the stack.

Okay, so given the formal definition of a NPDA, lets give a formal definition for the computation. We say that a
pushdown automaton M = (Q,Σ,Γ, δ, q0, F ) accepts the input w if w can be written as w1w2 . . . wm where wi ∈ Σε,
and a sequence of states r0, r1, . . . , rm ∈ Q exists along with a sequence of strings s0, s1, . . . , sm ∈ Γ∗ exists such that

1. r0 = q0 and s0 = ε. This is the requirement that the start state is correct and that the stack starts as the empty
string.

2. For i ≤ 0 ≤ m − 1, we have (ri+1, b) ∈ δ(ri, wi + 1, a) where si = at and si+1 = bt for some a, b ∈ Γε and
t ∈ Γ∗. This is the requirement that the evolution is correct according to the transition function. Note that si

represents the stack at step i of the computation.

3. rm ∈ F . This is the condition that the final state is an accept state.

II. EXAMPLE

Lets give an example of a NPDA which recognizes our old friend the non-regular language

w = {0n1n|n ≥ 0}

First lets give an informal description of how a pushdown automata would recognize this language. Informally the
idea is that as we read of the symbols from the input, we push them onto the stack. After each such push we
nondeterministically guess that we have reached the end of the 0s and then begin to pop off the 0s everytime we read
a 1. If we make it back to a state where the stack is empty while always reading 1s and popping off 0s, and there are
no more symbols to read we accept.

One issue in constructing an NPDA which accepts this language is that out definition of a NPDA doesn’t allow us
to know that we have the empty stack. To get around this, we will use an extra symbol in the stack alphabet, call it
$, which allows us to keep track of the bottom of the stack.

Okay so now lets formally define the NPDA, (Q,Σ,Γ, δ, q0, F ):

1. Q = {q1, q2, q3, q4}.

2. Σ = {0, 1}.

3. Γ = {0, 1}. We will need two stack symbols, one to keep track of the bottom of the stack and the other to keep
track of having read zeros.

4. The transition function is given by the following table:

Input: 0 1 ε

Stack: 0 $ ε 0 $ ε 0 $ ε

q1 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ {(q2, $)}
q2 ∅ ∅ {(q2, 0)} {(q3, ε)} ∅ ∅ ∅ ∅ ∅
q3 ∅ ∅ ∅ {(q3, ε)} ∅ ∅ ∅ {(q4, ε)} ∅
q4 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

5. q0 = q1.

6. F = {q1, q4}.
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We can also specify this NPDA via something resembling a state diagram. But now instead of each arrow being
labeled by a symbol from the input alphabet, each transition is labeled by as x, y → z symbolizing that when the
machines is reading an x from the input it may replace the symbol y on the top of the stack with z. Here is that state
diagram:

// q1
ε,ε→$ // q2

0,ε→0

		

1,0→ε

��
q4 q3

1,0→ε

UUε,$→ε
oo

It is helpful to consider how this NPDA acts on some input strings. First consider how this machine acts on 000111.
The machine begins in state q1 with the state empty, ε. Then it makes a ε transition and ends up with this state and
symbol (q1, ε) and the state and stack (q1, $). Now the machine reads 0. The q1 state then dies out, but the q2 state,
adds 0 to the stack and thus transitions to (q2, 0$). The machine then reads the next 0. This adds another 0 to the
stack and the state remains in q2: (q2, 00$). Next the machine reads the third 0 and transitions to (q2, 000$). Now
the machines reads the first 1. This will transition the machine to q3 because the top of the stack is 0, and remove
the 0 from the top of the state. This produces the state (q3, 00$). Reading the next 1 will pop off another 0 resulting
in (q3, 0$). The final 1 produces transitions to the state (q3, $). But now there is an allowed ε transition because the
symbol on the top of the stack is $. This transitions to (q4, ε). Since we are at the end of the computation and we
have a state alive which is an accept state, the machine will accept this string.


