CSE 322
Introduction to Formal Models in Computer Science

Minimizing DFAs

Given a DFA M = (Q, %, d, s, F') such that A = L(M) how do we find a DFA M’ of minimal
size such that A = L(M’)? We know that such a DFA has precisely one state for each equivalence
class of =4 and that each equivalence class of =4 is a union of equivalence classes of =,;. All
that we would need to do is to figure out how to group the states of M so that their corresponding
equivalence classes lie in a single equivalence class of = 4. In order to do this, rather than starting
with individual states and clumping them together we will instead begin by grouping states together
and separate them only when necessary. When we have finished we will have produced the minimal
DFA for A.

DEFINITION 0.1 For each i > 0, define an equivalence relation =; on the set of states) of M by
p =; q if and only if for all strings z € ¥* with |z| < i, 6*(p,z) € F < §*(¢q,2) € F.

Now lets get some intuition for this definition. The following lemma says that if states p and ¢
are =, for all 7, then the inputs that reach p and ¢ should all go to the same state in a minimal DFA
for L(M) and otherwise those inputs should go to different states in that minimal DFA.

Lemma 1 Let A = L(M). Let p,q € Q and suppose that every state of M is reachable from the
start state s. Then p =; q for all © > 0 if and only if the equivalence classes of =), corresponding
to p and q lie in the same equivalence class of = 4.

Proof Suppose that p =; ¢ for all values of ¢ > 0. Then for any z € ¥*, if §*(s,z) = p and
0*(s,y) = q then since p =; ¢ for i = |z|, we know that §*(s,x2) € F < 0*(s,yz) € F, but
this means that xz € A < yz € A. Therefore any two strings that reach p and ¢ are in the same
equivalence class of =4.

Suppose that p #; ¢ for some i. Then there is some z with |z| < i such only one of §*(p, z),
0*(q, z) is in F'. Since p and ¢ are both reachable from s, there are strings = and y with §*(s, z) = p
and 6*(s,y) = q. Therefore only one of §*(s,zz),0*(yz) is in F" and so only one of xz, yz is in A.
This means that the classes of =, corresponding to p and ¢ are not in the same equivalence class
of =4. [

That’s all very well but how can we figure out when states are equivalent to each other under
=,? We’ll see that = is easy to figure out and we can figure out =, easily once we know =;.

Base Case: Observe first that we can figure out the equivalence classes of =, quite easily since
in this case z = ¢ and its two equivalence classes are therefore /' and @ \ F.

Recursive Step: Given =; it is fairly easy to figure out =, ,: First of all, equivalent states
under =, ,; must be equivalent under =; since they must agree for all strings z of length up to 7.
To also make sure that they agree for all strings 2z’ up to i + 1, we just check that after reading the
first character of 2’ we arrive at states that are equivalent for all strings of length up to i. More
precisely, p =;11 g if and only if p =; g and for all a € X, §(p, a) =; 6(q, a).

1

Stopping: Now suppose at any point that we find that =, is the same as =;, i.e. we haven’t
split any classes of =; based on the outgoing arcs. Then running through the definitions we see
that =;_» will also be the same and in fact =, for all ¢ > j will be the same. (This is called a fixed
point.) Also observe that because p =; ¢ implies thatp =;_; getc.,p =; ¢ < p =; g forall7 > 0.

Therefore, to figure out the minimal DFA for A we begin with =, and repeatedly create =,
from =; up until it reaches a fixed point =;. To obtain the minimal DFA for A we collapse all
states in each equivalence class of =; into a single state. By construction none of the arcs will have
labels that conflict with each other. (That is, for all a € X2, all arcs out of any collapsed state will
lead to the same collapsed state.)

Analysis: How many steps does this take? Well, each time =, is different from =; there is a
least one more equivalence class. Since the number of equivalence classes is never more than |Q)|,
a fixed point is reached after at most |()| — 1 steps.

Example: Consider the DFA in Figure 1 on the next page. We remove state 4 because it isn’t
reachable.

=0: {1,2,5,6,7,8}.{3}

In the first group, state 6 has an a-edge to the second group (state 3); the others have a-edges
to the first group.
In the first group, states 2 and 8 have b-edges to the second group (state 3); the others have b-edges
to the first group.

=1: {1.5,7}.{2.8}.{6} {3}

In the first group, states 1 and 5 have b-edges to the third group (state 6); state 7 has a b-edge
to the first group. In the first group, states 1 and 5 have a-edges to the second group; state 7 has
an a-edge to the first group. In the second group, both states have a-edges to the first group and
b-edges to the 4th group.

=21 {1.5}.{7}{2.8} {6}.{3}
In the first group, both states have a-edges to the third group and b-edges to the fourth group.
In the third group, both states have a-edges to the first group and b-edges to the last group.

=s: {1.5}.{7}.{2.8}.{6}.{3}

Since =3 and =, are the same the procedure halts. The minimal DFA has 5 states and is shown
in Figure 2.

Figure 1: Original DFA

Figure 2: Minimized DFA

