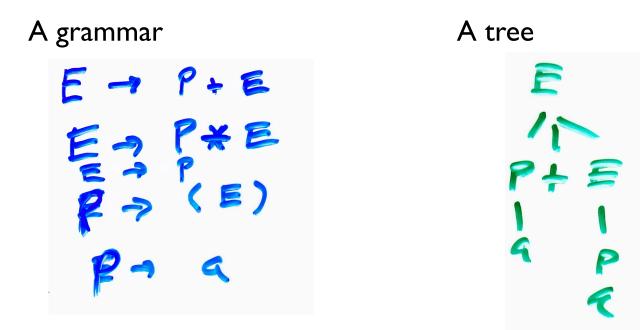
Trees, Derivations and Ambiguity



3 derivations correspond to same tree (same rules being used in the same places, just written in different orders in the linear derivation)

> 1) E => P+E => a+E => a+P => a+a2) E => P+E => P+P => a+P => a+a3) E => P+E => P+P => P+a => a+aBut only one *leftmost* derivation corresponds to it — (and *vice versa*). (see HW#7 for more)

Another grammar for the same language:

$E \rightarrow E+E \mid E^*E \mid (E) \mid a$

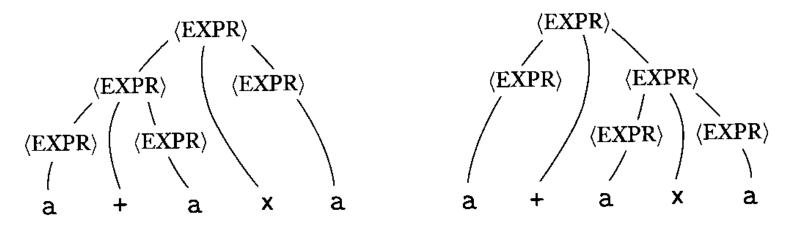
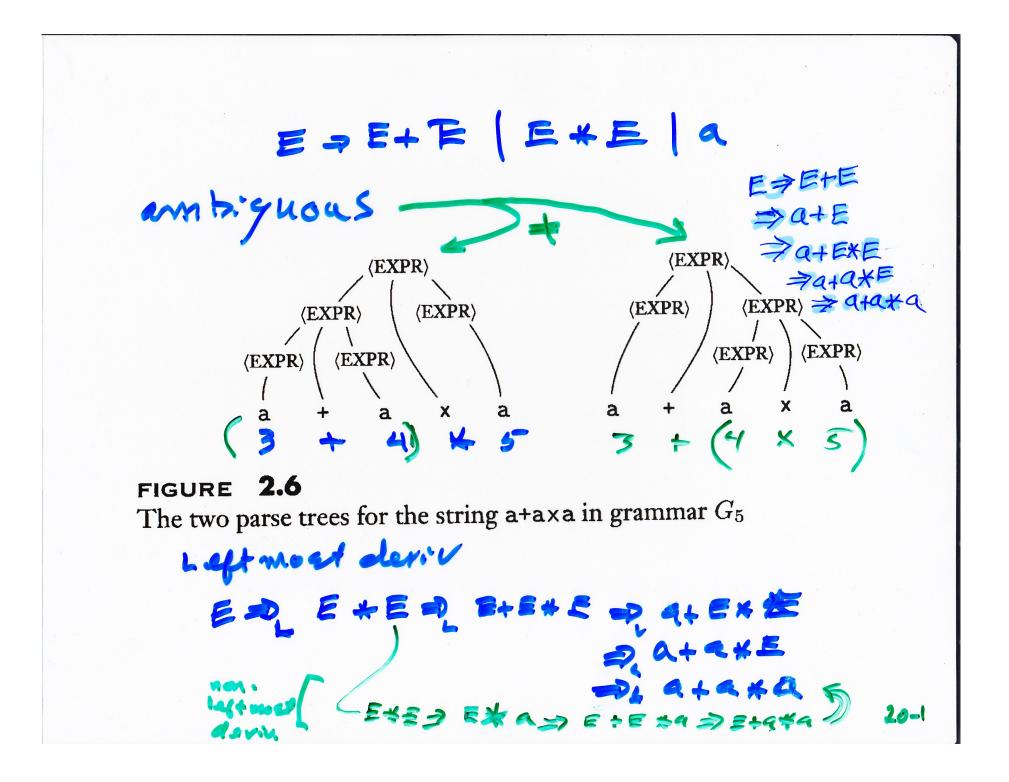


FIGURE 2.6

The two parse trees for the string $a+a \times a$ in grammar G_5

This grammar is *ambiguous*: there is a string in L(G) with two different parse trees, or, equivalently, with 2 different leftmost derivations. Note the pragmatic difference: in general, (a+a)*a != a+(a*a); which is right?

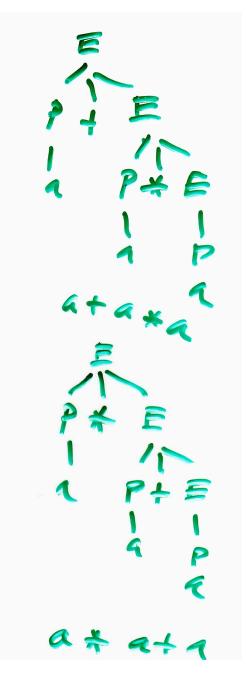


The "E, P" grammar again

This grammar is *un*ambiguous.

(Why? Very informally, the 3 E rules generate $P(((+'\cup'*')P)^*$ and only via a parse tree that "hangs to the right", as shown.)

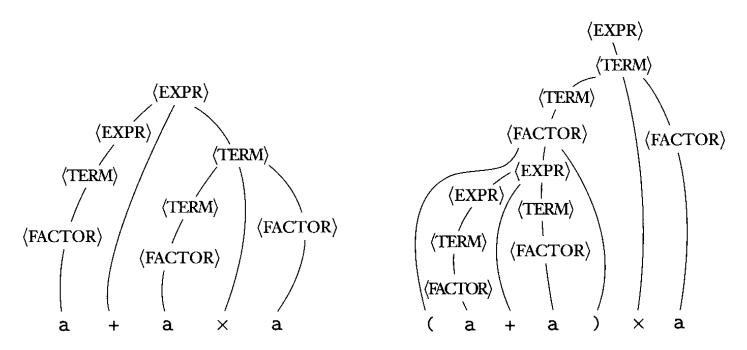
But it has another undesirable feature: Parse tree structure does not reflect the usual precedence of * over +. E.g., tree at lower right suggests "a * a + a == a * (a + a)"



EXAMPLE 2.4 ·····

Consider grammar $G_4 = (V, \Sigma, R, \langle EXPR \rangle)$. V is $\{\langle EXPR \rangle, \langle TERM \rangle, \langle FACTOR \rangle\}$ and Σ is $\{a, +, x, (,)\}$. The rules are $\langle EXPR \rangle \rightarrow \langle EXPR \rangle + \langle TERM \rangle | \langle TERM \rangle$ $\langle TERM \rangle \rightarrow \langle TERM \rangle \times \langle FACTOR \rangle | \langle FACTOR \rangle$ $\langle FACTOR \rangle \rightarrow (\langle EXPR \rangle) | a$

The two strings $a+a \times a$ and $(a+a) \times a$ can be generated with grammar G_4 . The parse trees are shown in the following figure.



A more complex grammar, again the same language. This one is unambiguous *and* its parse trees reflect usual precedence/associativity of plus and times.

L= { aibick / i=j ~ j=k }

- S-> AC DB
- A= aAb/E
- Cn cl E
 - DarDIE
 - B-> bBclc
 - a¹⁰6¹⁰ c²² a¹⁰6¹⁰ c²²

Can we always tweak the grammar to make it unambiguous?

No! This language is a CFL; see grammar at left. Easy to see this G is ambiguous. Hard to prove, but true, that every G for this L is also ambiguous. Hopefully this is fairly intuitive-strings of the form $a^nb^nc^n$ can come from the i=j or j=k path

G is ambiguous L is *inherently ambiguous*, meaning every G for L is ambiguous

Some closure results for CFLs

Theorem D CFL's are closed under U, • , *

Corr. all regula language no CFL'S. PS: Give CFL's For ArilE?, lag for each

$$\frac{Concet}{G_{i}:=(V_{i},z,R_{i},s;)}$$
be 2 CFG's
w:th $V_{i} \wedge V_{2} = \Phi$
w:th $V_{i} \wedge V_{2} = \Phi$
with $N_{i} \wedge V_{2} = \Phi$
 $S_{i} \cdot C \wedge N_{i} \wedge V_{2} = \Phi$
 $S_{i} = (V, Z, R, S)$
 $V = V_{i} \vee V_{2} \vee \{S, S\}$
 $R = R_{i} \vee R_{2} \vee \{S, S, S\}$
 $Y \times C_{i} \vee Y_{2} \wedge C_{2}$
 $S_{i} = S_{i} + S_{2} = Y$
 $S_{i} = S_{i} + S_{2} = Y$
 $S_{i} + S_{2} = S_{i} \times Y_{2} = X_{i} \times Y_{2}$
 $S_{i} + C_{2} = C_{i} + S_{2} = X_{i} \times Y_{2}$