8: Splay Trees

CSE326 Spring 2002

April 16, 2002

Move-to-Front Heuristic
Search for Pebbles:

- Move found item to front of list
- Frequently searched items will move to start of list
- Effective both theoretically and practically
Splay(12)

Move-To-Front for Trees

Splay(12)

Remember the path to the node

_ Know Who Begot You

Splay(12)

Look at Parent and Grandparent

Splay Case 1

Splay(12)

Rotate Left 7, Rotate Left 10

Splay(12)

Rotate Left 6, Rotate Left 13

Splay(12)

Rotate Left 2

Splay Cases

Splay (k) Splay k, or predecessor or successor to k, to root, depending if k is in the tree.

Insert(k) Splay (k), then update

Delete $(k) \operatorname{Splay}(k)$, if root is k, then remove it, and $\operatorname{Concat}(A, B)$

Concat $\left(T_{1}, T_{2}\right):$ Splay $\left(+\infty, T_{1}\right)$, then join T_{2} as right child of T_{1}.

Amortized Analysis

- Splaying is the expensive operation
- Sometimes we do more than $\mathrm{O}(\log n)$ work per node. .
- Sometimes we do less than $O(\log n)$ work per node...
- But it balances out: m operations in a tree with at most n nodes takes $\mathrm{O}(m \log n)$ time!
- Easy to say, harder to prove
Time = Money

We proved we needed to spend at most $\log n+4$ time per AVL insertion

If the insertion was easy, our analysis loses

If the splay was easy, bank the left-over money

If the splay was hard, use money from the bank
\qquad

- Always invest $3\lfloor\log n\rfloor+1$ per splay
- Prove there's always enough money in the bank for any operation
- Then $\mathrm{O}(m \log n)$ time to do m operations

$r(v)=\lfloor\log$ size of subtree at $v\rfloor$

Rank of parent at least that of any child, but sometimes not greater.

If both children have same rank, than rank of parent is larger

_— The Money Invariant ___

- Each node v has $r(v)$ dollars
- If v moves up, add more money to v

$$
r^{\prime}(v)>r(v)
$$

- If v moves down, take money from v
$r^{\prime}(v)<r(v)$

- Always the last step
- Only ranks of P and Q change
- $r^{\prime}(P)=r(Q)$
- Get $r(P)$ dollars
- Need $r^{\prime}(Q) \leq r^{\prime}(P)$ dollars
- Need \$1 to do the rotation
- Total: $\leq r^{\prime}(P)-r(P)+1$
\qquad

- Need $\begin{aligned} & r^{\prime}(Q)+r^{\prime}(R)-(r(P)+r(Q)) \\ \leq & 2\left(r^{\prime}(P)-r(P)\right)\end{aligned}$
- If $r^{\prime}(P)>r(P)$, then $3\left(r^{\prime}(P)-r(P)\right)$ is enough to pay for the rotation, too
- Otherwise, $r^{\prime}(P)=r(P)$, so do we need $\$ 1$ to pay for the rotation?
- If we pay $\$ 1$ for each case II, could pay $\Theta(n)$, and we need O $(\log n)$

- If cost only depends on rank difference, we'll be okay:

$$
\begin{aligned}
& 3\left(r^{(1)}(P)-r(P)\right) \\
+ & 3\left(r^{(2)}(P)-r^{(1)}(P)\right) \\
+ & 3\left(r^{(3)}(P)-r^{(2)}(P)\right) \\
& \vdots \\
+ & 3\left(r^{(k)}(P)-r^{(k-1)}(P)\right)+1 \\
= & 3\left(r^{(k)}(P)-r(P)\right)+1 \\
\leq & 3\lfloor\log n\rfloor+1
\end{aligned}
$$

- If $r^{\prime}(P)=r(P)$, then
$\star r^{\prime}(R)<r(P)$
Otherwise $r^{\prime}(P)>r(P)$
$\star r^{\prime}(Q) \leq r^{\prime}(P)=r(P) \leq r(Q)$
* R's \$ $\Rightarrow P$
* P 's $\$ \Rightarrow \mathrm{R}$, with extra to pay for rotation

The Cost of Splaying: III

- R's $\$ \Rightarrow$ new P

- Q's \$ stays put
(may waste some)
- P^{\prime} s $\$ \Rightarrow$ new R , and pay $r^{\prime}(P)-r(P)$ extra \$s
- If $r^{\prime}(P)>r(P)$, we're within $3\left(r^{\prime}(P)-r(P)\right.$ after paying for rotation
- If $r^{\prime}(P)=r(P)$, then
$\star r^{\prime}(P)=r(P)=r(Q)=r(R)$
\star Hence $r^{\prime}(Q)<r^{\prime}(P)$ or
$r^{\prime}(R)<r^{\prime}(P)$, otherwise $r^{\prime}(P)>r(P)$
\star So $r^{\prime}(Q)<r(Q)$ or $r^{\prime}(R)<r(P)$, and can use extra $\$$ to pay for rotation

So What Does It All Mean?

If we perform m operations an have at most n nodes:

- Any Splay (K) needs at most $3\lfloor\log n\rfloor+1 \$$ to maintain money invariant
- Any lookup or delete performs at most 2 splays: at most $\$(6\lfloor\log n\rfloor+2)$
- Any insert performs 1 splay, plus money for the new root: at most $\$(4\lfloor\log n\rfloor)$
- $\mathrm{O}(m \log n)$ dollars total needed-matches AVL trees!

