
1

CSE 326: Data Structures
Lecture #10

B-Trees

Henry Kautz

Winter Quarter 2002

Beyond Binary Trees
�

One of the most important applications for search
trees is databases

�
If the DB is small enough to fit into RAM, almost
any scheme for balanced trees is okay

1980

RAM – 1MB

DB – 100 MB

2002 (WalMart)

RAM – 1,000 MB (gigabyte)

DB – 1,000,000 MB (terabyte)

gap between disk and main memory growing!

Time Gap
�

For many corporate and scientific databases, the
search tree must mostly be on disk

�
Accessing disk 200,000 times slower than RAM

�
Visiting node = accessing disk

�
Even perfectly balance binary trees a disaster!
log2(10,000,000) = 24 disk accesses

Goal: Decrease Height of Tree

M-ary Search Tree
�

Maximum branching
factor of M

�
Complete tree has
depth = l ogMN

�
Each internal node in a
complete tree has

M - 1 keys

runtime:

keys

B-Trees
�

B-Trees are balanced M-ary search trees
�

Each node has many keys
� internal nodes : between �M/2� and M children (except root),

no data – only keys,
smallest datum between search keys x and y equals x

� binary search within a nodeto find correct subtree
� each leaf contains between �L/2� and L keys
� all leaves are at the same depth
� choose M and L so that each node takes

one full { page, block, line} of memory
(why?)

�
Result:

� tree is log ���� M/2 �� �� n/(L/2) +/- 1 deep

3 7 1221

x<3 3≤x<7 7≤x<12 12≤x<21 21≤x

When Big-O is Not Enough
logM/2 n/(L/2)

= logM/2 n - logM/2 L/2

= O(logM/2 n) steps per option

= O(log n) steps per operation

Where’ s the beef?!

� log2(10,000,000) � = 24 disk accesses

� log200/2(10,000,000/(200/2)) � = � log100(100,000) � = 3 accesses

2

Making a B-Tree

The empty
B-Tree

M = 3 L = 2

3
Insert(3)

3 14
Insert(14)

Now, Insert(1)?

Splitting the Root

And create
a new root

1 3 14

1 3 14

14

1 3 14
3 14

Insert(1)

Too many
keys in a leaf!

So, split the leaf.

Insertions and Split Ends

Insert(59)

14

1 3 14 59

14

1 3 14

Insert(26)

14

1 3 14 26 59

14 26 59

1459

1 3 14 26 59

And add
a new child

Too many
keys in a leaf!

So, split the leaf.

Propagating Splits

1459

1 3 14 26 59

1459

1 3 14 26 595

1 3 5

Insert(5)

5 14

14 26 591 3 5

59

5 595

1 3 5 14 26 59

59

14

Add new
child

Create a
new root

Too many keys in an internal node!

So, split the node.

Insertion in Boring Text
�

Insert the key in its leaf
�

If the leaf ends up with L+1
items, overflow!

� Split the leaf into two nodes:
• original with ����(L+1) / 2 �� �� items

• new one with �� �� (L+1) / 2 �� �� items
� Add the new child to the parent
� If the parent ends up with M+1

items, overflow!

�
If an internal node ends up
with M+1 items, overflow!

� Split the node into two nodes:
• original with ����(M+1) / 2 �� �� items
• new one with �� �� (M+1) / 2 �� �� items

� Add the new child to the parent
� If the parent ends up with M+1

items, overflow!

�
Split an overflowed root in two
and hang the new nodes under
a new root

This makes the tree deeper!

Deletion

5

1 3 5 14 26 59 79

5989

14

89

5

1 3 5 14 26 79

7989

14

89

Delete(59)

3

Deletion and Adoption

5

1 3 5 14 26 79

7989

14

89

Delete(5)
?

1 3 14 26 79

7989

14

89

3

1 3 3 14 26 79

7989

14

89

A leaf has too few keys!

So, borrow from a neighbor

Deletion with Propagation

3

1 3 14 26 79

7989

14

89

Delete(3)
?

1 14 26 79

7989

14

89

1 14 26 79

7989

14

89

A leaf has too few keys!

And no neighbor with surplus!

So, delete
the leaf

But now a node
has too few subtrees!

Adopt a
neighbor

1 14 26 79

7989

14

89

14

1 14 26 79

89

79

89

Finishing the Propagation
(More Adoption)

Deletion in Two
Boring Slides of Text

�
Remove the key from its leaf

�
If the leaf ends up with fewer
than ����L/ 2 �� �� items, underflow!

� Adopt data from a neighbor;
update the parent

� If borrowing won’t work, delete
node and divide keys between
neighbors

� If the parent ends up with fewer
than ����M/ 2 �� �� items, underflow!

Why will dumping keys
always work if borrowing
doesn’ t?

Deletion Slide Two
�

If an internal node ends up with
fewer than ����M/ 2 �� �� items, underflow!

� Adopt subtrees from a neighbor;
update the parent

� If borrowing won’t work, delete node
and divide subtreesbetween neighbors

� If the parent ends up with fewer than
����M/ 2 �� �� items, underflow!

�
If the root ends up with only one
child, make the child the new root
of the tree

This reduces the height of
the tree!

Run Time Analysis of B-Tree
Operations

�
For a B-Tree of order M:

� Depth is log ���� M/2 �� �� n/(L/2) +/- 1
�

Find: run time in terms of both n and M=L is:
� O(log M) for binary search of each internal node
� O(log L) = O(log M) for binary search of the leaf node
� Total is ≤ O((logM/2 n/(M/2))(log M)+ log M)

= O((log n/(M/2))/(log M/2))(log M))
= O(log n + log M)

4

Run Time Analysis of B-Tree
Operations

�
Insert and Delete: run time in terms of both n and
M=L is:

� O(M) for search and split/combine of internal nodes
� O(L) = O(M) for search and split/combine of leaf nodes
� Total is ≤ O((logM/2 n/(M/2))M+ M)

= O((M/log M)log n)

A Tree with Any Other Name

FYI:
� B-Trees with M = 3, L = x are called 2-3 trees
� B-Trees with M = 4, L = x are called 2-3-4 trees

Why would we ever use these?

Summary
�

BST: fast finds, inserts, and deletes O(log n) on
average (if data is random!)

�
AVL trees: guaranteed O(log n) operations

�
B-Trees: also guaranteed O(log n), but shallower
depth makes them better for disk-based databases

�
What would be even better?

� How about: O(1) finds and inserts?

Coming Up
�

Hash Tables
�

Another assignment ?!
�

Midterm
�

Another project?!

