

Beyond Binary Trees

$>$ One of the most important applications for search trees is databases
$>$ If the DB is small enough to fit into RAM, almost any scheme for balanced trees is okay

1980	2002 (WalMart)
RAM -1 MB	RAM $-1,000 \mathrm{MB}$ (gigabyte)
DB -100 MB	DB $-1,000,000 \mathrm{MB}$ (terabyte)
gap between disk and main memory growing!	

Time Gap

$>$ For many corporate and scientific databases, the search tree must mostly be on disk
$>$ Accessing disk 200,000 times slower than RAM
$>$ Visiting node $=$ accessing disk
$>$ Even perfectly balance binary trees a disaster! $\log _{2}(10,000,000)=24$ disk accesses

Goal: Decrease Height of Tree

M-ary Search Tree

B-Trees

$>$ B-Trees are balanced M-ary search trees
$>$ Each node has many keys

- internal nodes : between $\lceil M / 2\rceil$ and M children (except root), no data - only keys,
smallest datum between search keys x and y equals x
- binary search within a node to find correct subtree
- each leaf contains between $\lceil L / 2\rceil$ and L keys
- all leaves are at the same depth
- choose M and L so that each node takes one full \{page, block, line\} of memory (why?)
$>$ Result:
- tree is $\left.\log _{\lceil M / 2}\right\rceil^{n /(L / 2)+/-1 ~ d e e p ~}$

When Big-O is Not Enough

$\log _{M / 2} n /(L / 2)$
$=\log _{M / 2} n-\log _{M / 2} L / 2$
$=\mathrm{O}\left(\log _{M / 2} n\right)$ steps per option
$=\mathrm{O}(\log n)$ steps per operation
Where's the beef?!
$\left\lceil\log _{2}(10,000,000)\right\rceil=24$ disk accesses
$\left\lceil\log _{200 / 2}(10,000,000 /(200 / 2))\right\rceil=\left\lceil\log _{100}(100,000)\right\rceil=3$ accesses

Finishing the Propagation
(More Adoption)

Deletion Slide Two

$>$ If an internal node ends up with fewer than $\lceil M / 2\rceil$ items, underflow!

- Adopt subtrees from a neighbor; update the parent
- If borrowing won't work, delete node and divide subtrees between neighbors
- If the parent ends up with fewer than「 $M / 2\rceil_{\text {items, underflow! }}$

This reduces the height of
$>$ If the root ends up with only one child, make the child the new root of the tree

Deletion in Two Boring Slides of Text

$>$ Remove the key from its leaf
$>$ If the leaf ends up with fewer than $\lceil L / 2\rceil$ items, underflow!

- Adopt data from a neighbor; update the parent
- If borrowing won't work, delete node and divide keys between neighbors
- If the parent ends up with fewer than $\lceil M / 2\rceil$ items, underflow

Run Time Analysis of B-Tree Operations

$>$ For a B-Tree of order M:

- Depth is $\left.\log _{\lceil M / 2}\right\rceil^{n /(L / 2)+/-1}$
$>$ Find: run time in terms of both n and $\mathrm{M}=\mathrm{L}$ is:
- $\mathrm{O}(\log \mathrm{M})$ for binary search of each internal node
- $\mathrm{O}(\log \mathrm{L})=\mathrm{O}(\log \mathrm{M})$ for binary search of the leaf node
- Total is $\leq \mathrm{O}\left(\left(\log _{M / 2} n /(M / 2)\right)(\log \mathrm{M})+\log \mathrm{M}\right)$
$=\mathrm{O}((\log \mathrm{n} /(\mathrm{M} / 2)) /(\log \mathrm{M} / 2))(\log \mathrm{M}))$
$=\mathrm{O}(\log \mathrm{n}+\log \mathrm{M})$

Run Time Analysis of B-Tree Operations $>$ Insert and Delete: run time in terms of both n and $\mathrm{M}=\mathrm{L}$ is: - $\mathrm{O}(\mathrm{M})$ for search and split/combine of internal nodes - $\mathrm{O}(\mathrm{L})=\mathrm{O}(\mathrm{M})$ for search and split/combine of leaf nodes - Total is $\leq \mathrm{O}\left(\left(\log _{M / 2} n /(M / 2)\right) \mathrm{M}+\mathrm{M}\right)$ $=\mathrm{O}((\mathrm{M} / \log \mathrm{M}) \log \mathrm{n})$

A Tree with Any Other Name

FYI:

- B-Trees with $\boldsymbol{M}=\mathbf{3}, \boldsymbol{L}=\mathbf{x}$ are called 2-3 trees
- B-Trees with $\boldsymbol{M}=\mathbf{4}, \boldsymbol{L}=\mathbf{x}$ are called 2-3-4 trees

Why would we ever use these?

