CSE 326: Data Structures

Beyond Binary Trees

> One of the most important applications for search
treesis databases

> If the DB is small enough to fit into RAM, almost
any schemefor balanced treesis okay

1980 2002 (WalMart)
RAM — 1,000 MB (gigabyte)
DB — 1,000,000 MB (terabyte)

RAM —-1MB
DB —-100 MB

gap between disk and main memory growing!

Lecture #10
S B-Trees
&‘ & Henry Kautz
S e Winter Quarter 2002
St et
Time Gap

» For many corporate and scientific databases, the
search tree must mostly be on disk

» Accessing disk 200,000 times slower than RAM

» Visiting node = accessing disk

» Even perfectly balance binary trees a disaster!
log,(10,000,000) = 24 disk accesses

Goal: Decrease Height of Tree

M-ary Search Tree

» Maximum branching
factor of M

» Completetree has
depth =1 og,N

» Each internal nodein a
completetree has
M - 1 keys
runtime:

B-Trees

» B-Trees are balanced M-ary search trees
» Each node has many keys

» Result:

internal nodes : between [M/2] and M children (except root),
no data— only keys,

smallest datum between search keys x and y equals x

binary search within anode to find correct subtree

each leaf contains between[L/2] and L keys

all leaves are at the same depth

choose M and L so that each node takes
one full { page, block, line} of memory
(why?)

treeis|og o7 NV/(L/2) +/- 1 deep

When Big-O is Not Enough

logy, N/(L/2)

=10gyy N - 10gyy, L12

= O(logy, n) steps per option
= O(log n) steps per operation

Where' s the beef?!

[log,(10,000,000) 1= 24 disk accesses

[10G50072(10,000,000/(200/2)) 1= 10g44,(100,000) 1= 3 accesses

Making aB-Tree

(1] (3]]
Insert(3) Insert(14)
The empty
B-Tree
M=3L=2

Now, Insert(1)?

Splitting the Root

Too many
keysin aleaf!

Insert(1) And create

@1:‘ anew root

S0, split the leaf.

Insertions and Split ENdS 1o many
Joe

Propagating Splits

Add new

Insert(5)

Too many keysin an internal node!

Create a
new root

So, split the node.

Deletion

Delete(59)

Insert(59) Insert(26) 479
So, split the leaf.
And add
anew child
Insertion in Boring Text
> Insert the key in its leaf > If an internal node ends up
» If the leaf ends up with L+1 W'tgpll\(':hl ItSdm% lO\ierﬂz‘(’jV!
B - | € node INto two noaes:
|tems‘overfI0\‘N! « origina with [(M1) / 27 items
= Split theleaf into two nodes: « new onewith|(M1) / 2 items
+ original with [(L+1)/ 2]items = Add the new child to the parent
« new onewith|(L+1)/ 2]items = If the parent ends up with M+1
= Add the new child to the parent items, overflow!
= |f the parent ends up with M+1
items, overflow! » Split an overflowed root in two
and hang the new nodes under
/ anew root

This makes the tree deeper!

Deletion and Adoption

A leaf has too few keys!

Delete(5)

Deletion with Propagation

A leaf has too few keys!

Delete(3)

But now a node
has too few subtrees!

So, delete
the leaf

Finishing the Propagation
(More Adoption)

Adopt a
neighbor

Deletion in Two
Boring Slides of Text

» Remove the key from its leaf

» |f the leaf ends up with fewer
than[L/ 2] items, under flow!
= Adopt datafrom aneighbor;
update the parent . .
= |f borrowing won't work, delete Why will dumpl ng kE){S
node and divide keysbetween |« @ways work if borrowing
neighbors doesn't?
= |f the parent ends up with fewer
than[M 27 items, underflow!

Deletion Slide Two

» If aninternal node ends up with
fewer than[™ 27items, under flow!
= Adopt subtrees from aneighbor;
update the parent
= |f borrowing won't work, delete node
and divide subtrees between neighbors

= |f the parent ends up with fewer than
™ 2]items, underflow!

> If the root ends up with only one This retljuc&cthe height of
child, make the child the new root " thetree!
of thetree

Run Time Analysis of B-Tree
Operations

> For aB-Tree of order M:
= Depth islogy 7 0/(L/2) +/- 1
» Find: run timein terms of both nand M=L is:
= O(log M) for binary search of each internal node
= O(log L) = O(log M) for binary search of the leaf node
= Total is < O((logy,, /(M/2))(log M)+ log M)

= O((log n/(M/2))/(log M/2))(log M))
=0O(logn + logM)

Run Time Analysis of B-Tree
Operations

» Insert and Delete: run timein terms of both n and
M=L is:
= O(M) for search and split/combine of internal nodes
= O(L) = O(M) for search and split/combine of leaf nodes
= Total is < O((logyy, V(M/2))M+ M)
=O((M/log M)log n)

A Treewith Any Other Name

FYI:
= B-TreeswithM = 3,L = x arecalled 2-3 trees
= B-TreeswithM = 4, L = x arecalled 2-3-4 trees

Why would we ever use these?

Summary

» BST: fast finds, inserts, and deletes O(log n) on
average (if dataisrandom!)

» AVL trees: guaranteed O(log n) operations

» B-Trees: also guaranteed O(log n), but shallower
depth makes them better for disk-based databases

» What would be even better?
= How about: O(1) finds and inserts?

Coming Up

» Hash Tables

> Another assignment ?!
> Midterm

> Another project?

