CSE 326: Data
Structures
Lecture #10
Hashing |

Henry Kautz
Winter 2002

Midterm

» Friday February 8t

> Will cover everything through hash tables
» Weiss Chapters 1 -5

» 50 minutes, in class

> Y ou may bring one page of notesto refer to

Dictionary & Search ADTs

» Operations > kimchi

= create i

. = spicy cabbage
= destroy insert » kreplach
: ;l_wssrt 'kf’:g;";emba + tasty stuffed dough
in > kiwi
= delete find(kreplach) » Australian fruit
« kreplach

- tasty stuffed dough

> Dictionary: Stores values associated with user-specified keys
= keys may be any (homogenous) comparable type
= values may be any (homogenous) type
= implementation: datafield is astruct with two parts

» Search ADT: keys = values

Implementations So Far

Hash Tables: Basic Idea

» Use akey (arbitrary string or number) to index
directly into an array — O(1) time to access records
= A[“kreplach”] = “tasty stuffed dough”
= Need a hash function to convert the key to an integer

Key Data
0 |kimchi spicy cabbage
1 | kreplach tasty stuffed dough
2 |kiwi Australian fruit

unsorted | sorted Trees Array of size
ligt array ivSTLi ag;gem n where keys
splay — amortized ae0,...,n-1
insert 0O(1) O(n) O(log n)
find o(n) O(logn) | O(log n)
delete o(n) o(n) O(log n)
Applications

» When log(n) isjust too big...
= Symbol tablesin interpreters
= Real-time databases (in core or on disk)
« air traffic control
« packet routing
> When associative memory is needed... |,
= Dynamic programming
« cache results of previous computation
f(x) Dif (Find(x)) then Find(x) else f(x)
« Chess endgames
= Many text processing applications —e.g. Web
$Status{$LastURL} = “visited”;

How could you use hash tablesto...

» Convert adocument to a Sparse Boolean Vector?
» Create an index for abook?

> Implement alinked list?

Properties of Good Hash Functions

» Must return number O, ..., tablesize
= Easy: modulo arithmetic —alwaysend in“%
t abl esi ze”
» Should be efficiently computable — O(1) time
» Should not waste space unnecessarily
= For every index, thereisat least one key that hashesto it
= | oad factor lambda A = (number of keys/ TableSize)
» Should minimize collisions
= different keys hashing to same index

Integer Keys

> Hash(x) = x % TableSize
> Good ideato make TableSize prime. Why?

Integer Keys

» Hash(x) = x % TableSize
» Good idea to make TableSize prime. Why?
= Because keys are typically not randomly distributed, but
usually have some pattern
« mostly even
« mostly multiples of 10
« in general: mostly multiples of some k
= |f kisafactor of TableSize, then only (TableSize/k) slots
will ever be used!
= Since the only factor of aprime number isitself, this
phenomena only hurtsin the (rare) case where
k=TableSize

Strings as Keys

> If keys are strings, can get an integer by adding up
ASCII values of charactersin key
while (*key I'= *\0")

StringVal ue += *key++;

» Problem 1: What if TableSzeis 10,000 and all keys
are 8 or less characters long?

» Problem 2: What if keys often contain the same
characters (“abc”, “bca’, etc.)?

Hashing Strings

> Basicidea: consider string to be ainteger (base 128):

Hash(“abc”) = (‘a*1282 + ‘b'* 128! + °C') % TableSize

» Range of hash large, anagrams get different values
> Problem: although achar can hold 128 values (8

bits), only a subset of these values are commonly
used (26 letters plus some special characters)

= S0 just use asmaller “base”’

» Hash(“abc’) = (‘a*322+ ‘b'*321 + '¢’) % TableSize

Making the String Hash
Easy to Compute

» Horner'sRule

int hash(String s) {
h = 0;
for (i =s.length() - 1; i >=0; i--) {
h = (s; + h<<B5) %tabl eSize;

return h;
} What is
happening
» Advantages: here???

How Can Y ou Hash...

> A pointer?

> A set of values— (name, birthdate) ?

How Can Y ou Hash...

> A pointer?
((int) p) % TableSize

> A set of values — (name, birthdate) ?
(Hash1(name) + Hash2(birthdate)) % TableSize

Collisions and their Resolution

» A collision occurs when two different keys hash to the
same value
= E.g. For TableSze = 17, the keys 18 and 35 hash to the same value
* 18mod17=1and35mod 17 =1
» Cannot store both data recordsin the same slot in array!
» Two different methods for collision resol ution:
= Separate Chaining: Use adictionary data structure (such as
alinked list) to store multiple items that hash to the same
dot
= Open addressing (or probing): search for empty slots using
asecond function and storeitem in first empty slot that is
found

A Rose by Any Other Name...

» Separate chaining = Open hashing

» Open addressing = Closed hashing

Hashing with Separate Chaining

What was
A??

. - h(a) = h(d)
> Put alittle dictionary at each 0§ h(e) = h(b)
entry
= choosetype as appropriate 1 EE nn
= common case is unordered 2
linked list (chain) X
> e ERDEION
= performance degrades with 4
length of chains X
. }‘Oc(aDn begreater than 1 5[] N

L oad Factor with Separate
Chaining
» Search cost
= unsuccessful search:

= successful search:

» Optimal load factor:

Load Factor with Separate
Chaining
» Search cost
= unsuccessful search:
Whole list — average length A
= successful search:
Half the list — average length A/2+1

» Optimal load factor:

= Zero! But between2and 1 isfast and makes good use
of memory.

Alternative Strategy: Open Addressing

Problem with separate chaining:
Memory consumed by pointers—
32 (or 64) bitsper key!

h(a) = h(d) °
What if we only allow one Key at each h(e) =h(b) 1
entry? a
= two objectsthat hash to the same spot can't 27>
both go there d
= firgt onethere getsthe spot 3 T
= next one must go in another spot 7)
» Properties 4o
= Ag1 5[]
= performance degrades with difficulty of | C |
finding right spot 6

Question to Think About for
Monday

> What is an application where it isagood ideato
use open addressing and not do probing — you just
allow callisions to occur?

Collision Resolution by Open
Addressing

» Given anitem X, try
cells hy(X), hy(X), hy(X), ..., h(X)
» hi(X) = (Hash(X) + F(i)) mod TableSze
= Define F(0) =0
» Fisthe collision resolution function. Three
possibilities:
= Linear: F(i) =1i
= Quadratic: F(i) =i
= Double Hashing: F(i) =i - Hash,(X)

Open Addressing |: Linear Probing

» Main Idea: When collision occurs, scan down the
array one cell at atimelooking for an empty cell
= h(X) = (Hash(X) + i) mod TableSze (i=0,1,2, ...)
= Compute hash value and increment it until afree cell
isfound

Linear Probing Example

insert(14) insert(8) insert(2l) insert(2)
14%7=0 8%7=1 21%7=0 2%7=2

014 914 914 014
1 1 8 1 8 1 8
2| 2| 2| 21 2| 12
3 3| 3| 3| 2
4 4 4 4
5| 5| 5| 5|
6 | 6 | 6 | 6

1 1 3 2

probes:

Drawbacks of Linear Probing

» Works until array is full, but as number of items N
approaches TableSze (A = 1), access time approaches O(N)
» Very proneto cluster formation (asin our example)
= |f akey hashes anywhere into a cluster, finding afree cell
involves going through the entire cluster — and making it
grow!
= Primary clustering — clusters grow when keys hash to values
close to each other
» Can have cases where table is empty except for afew
clusters
= Does not satisfy good hash function criterion of distributing
keys uniformly

Load Factor in Linear Probing
» For any A <1, linear probing will find an empty slot

» Search cost (for large table sizes)
= successful search:

=)

= unsuccessful search:
1 1
= 1+72
27 @1-4)

» Performance quickly degradesfor A > 1/2

Open Addressing I1: Quadratic
Probing

» Main Idea: Spread out the search for an empty slot —
Increment by i2 instead of i

> h(X) = (Hash(X) +i?) % TableSze
hO(X) = Hash(X) % TableSize
h1(X) = Hash(X) + 1 % TableSize
h2(X) = Hash(X) + 4 % TableSize
h3(X) = Hash(X) + 9 % TableSize

Quadratic Probing Example

insert(14) insert(7) insert(2l) insert(2)
14%7=0 8%7=1 21%7=0 2%7=2

914 914 914 914
1] g g g
2 2 2 2,
3| 3 3 3|
4 4 4Z 451
5 5 5| 5|
6 | 6 | 6 | 6

1 1 3 1

probes:

Problem With Quadratic Probing

insert(14) insert(8) insert(21) insert(2) insert(7)
14%7=0 8%7=1 21%7=0 2%7=2 7%7=0

914 914 014 914 914
1 1 8 1 8 1 8 1 8

2 2 2 2| 2 2| 2

3| 3| 3| 3| 3|
T T 41
s | s | 5[| 5 5|

6 | 6 | 6 | 6 | 6 |

probes: 1 1 3 1 ”

Load Factor in Quadratic Probing

» Theorem: If TableSizeisprimeand A <%,
quadratic probing will find an empty slot; for greater
A, might not

» With load factors near 2 the expected number of
probesis about 1.5

> Don't get clustering from similar keys (primary
clustering), still get clustering from identical keys
(secondary clustering)

Monday

» Double hashing

» Deletion and rehashing

» Analysis of memory use

» Universal hash functions

» Perfect hashing

» and answer to the PUZZLER: What isan
application whereit is a good idea to use open
addressing and not do probing —you just allow
collisionsto occur?

