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CSE 326: Data 
Structures

Lecture #10
Hashing I

Henry Kautz

Winter 2002

Midterm
�

Friday February 8th

�
Will cover everything through hash tables 

�
Weiss Chapters 1 – 5

�
50 minutes, in class

�
You may bring one page of notes to refer to

Dictionary & Search ADTs
�

Operations
� create� destroy� insert� find� delete

�
Dictionary:  Stores valuesassociated with user-specified keys� keys may be any (homogenous) comparable type� values may be any (homogenous) type� implementation: data field is a struct with two parts�
Search ADT:  keys = values

�
kim chi

� spicy cabbage�
kreplach

� tasty stuffed dough�
kiwi

� Australian fruit

insert

find(kreplach)

•kohlrabi
- upscale tuber

• kreplach
- tasty stuffed dough

Implementations So Far

O(log n)

O(log n)

O(log n)

Trees
BST – average
AVL – worst case
splay – amortized

Array of size 
n where keys 
are 0,…,n-1

O(n)O(n)delete

O(log n)O(n)find

O(n)O(1)insert

sorted

array

unsorted

list

Hash Tables: Basic Idea
�

Use a key (arbitrary string or number) to index 
directly into an array – O(1) time to access records

� A[“kreplach” ] = “ tasty stuffed dough”
� Need a hash function to convert the key to an integer

Australian fruitkiwi2

tasty stuffed doughkreplach1

spicy cabbagekim chi0

DataKey

Applications
�

When log(n) is just too big…
� Symbol tables in interpreters
� Real-time databases (in core or on disk)

• air traffic control

• packet routing
�

When associative memory is needed…
� Dynamic programming

• cache results of previous computation

f(x) �� �� if ( Find(x) ) then Find(x) else f(x)
• Chess endgames

� Many text processing applications – e.g. Web
$Status{$LastURL} = “ visited” ;



2

How could you use hash tables to…

�
Convert a document to a Sparse Boolean Vector?

�
Create an index for a book?

�
Implement a linked list?

Properties of Good Hash Functions
�

Must return number 0, …, tablesize
� Easy:  modulo arithmetic – always end in “% 

t abl esi ze”
�

Should be efficiently computable – O(1) time
�

Should not waste space unnecessarily
� For every index, there is at least one key that hashes to it
� Load factor lambda  λ = (number of keys / TableSize)

�
Should minimize collisions
= different keys hashing to same index

Integer Keys
�

Hash(x) = x % TableSize
�

Good idea to make TableSize prime.  Why?

Integer Keys
�

Hash(x) = x % TableSize
�

Good idea to make TableSize prime.  Why?
� Because keys are typically not randomly distributed, but 

usually have some pattern
• mostly even

• mostly multiples of 10

• in general: mostly multiples of some k
� If k is a factor of TableSize, then only (TableSize/k) slots 

will ever be used!
� Since the only factor of a prime number is itself, this 

phenomena only hurts in the (rare) case where 
k=TableSize

Strings as Keys
�

If keys are strings, can get an integer by adding up 
ASCII values of characters in key
whi l e ( * key ! = ‘ \ 0’ )

St r i ngVal ue += * key++;

�
Problem 1: What if TableSize is 10,000 and all keys 
are 8 or less characters long? 

�
Problem 2: What if keys often contain the same 
characters (“abc” , “bca”, etc.)?

Hashing Strings
�

Basic idea: consider string to be a integer (base 128):
Hash(“abc”) = (‘a’*1282 + ‘b’*1281 + ‘c’ ) % TableSize

�
Range of hash large, anagrams get different values

�
Problem: although a char can hold 128 values (8 
bits), only a subset of these values are commonly 
used (26 letters plus some special characters)
� So just use a smaller “base”  
� Hash(“abc”) = (‘a’*322 + ‘b’*321 + ‘c’ ) % TableSize
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Making the String Hash
Easy to Compute

�
Horner’s Rule

�
Advantages:

i nt hash( St r i ng s)  {
h = 0;
f or  ( i  = s. l engt h( )  - 1;  i  >= 0;  i - - )  {

h = ( s i + h<<5)  % t abl eSi ze;
}
r et ur n h;  

} What is 
happening 
here???

How Can You Hash…
�

A pointer?

�
A set of values – (name, birthdate) ?

How Can You Hash…
�

A pointer?
((int) p) % TableSize

�
A set of values – (name, birthdate) ?
(Hash1(name) + Hash2(birthdate)) % TableSize

Collisions and their Resolution
�

A collision occurs when two different keys hash to the 
same value

� E.g. For TableSize= 17, the keys 18 and 35 hash to the same value
� 18 mod 17 = 1 and 35 mod 17 = 1

�
Cannot store both data records in the same slot in array!

�
Two different methods for collision resolution:

� Separate Chaining: Use a dictionary data structure (such as 
a linked list) to store multiple items that hash to the same 
slot

� Open addressing (or  probing): search for empty slots using 
a second function and store item in first empty slot that is 
found

A Rose by Any Other Name…

�
Separate chaining = Open hashing

�
Open addressing = Closed hashing

3

2

1

0

6

5

4

a d

e b

c

Hashing with Separate Chaining

�
Put a little dictionary at each 
entry

� choose type as appropriate
� common case is unordered 

linked list (chain)
�

Properties
� performance degrades with 

length of chains
� λλλλ can be greater than 1

h(a) = h(d)
h(e) = h(b)

What was
λλλλ??
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Load Factor with Separate 
Chaining

�
Search cost

� unsuccessful search:

� successful search:

�
Optimal load factor:

Load Factor with Separate 
Chaining

�
Search cost

� unsuccessful search:
Whole list – average length λλλλ

� successful search:
Half the list – average length λλλλ/2+1

�
Optimal load factor:

� Zero!  But between ½ and 1 is fast and makes good use 
of memory.

Alternative Strategy: Open Addressing
Problem with separate chaining:

Memory consumed by pointers –
32 (or  64) bits per  key!

What if we only allow one Key at each 
entry?
� two objects that hash to the same spot can’ t 

both go there
� first one there gets the spot
� next one must go in another spot

�
Properties
� λλλλ ≤≤≤≤ 1
� performance degrades with difficulty of 

finding right spot

a

c

e
3

2

1

0

6

5

4

h(a) = h(d)
h(e) = h(b)

d

b

Question to Think About for 
Monday

�
What is an application where it is a good idea to 
use open addressing and not do probing – you just 
allow collisions to occur?

Collision Resolution by Open 
Addressing

�
Given an item X, try 
cells h0(X), h1(X), h2(X), …, hi(X)

�
hi(X) = (Hash(X) + F(i)) mod TableSize 

� Define F(0) = 0
�

F is the collision resolution function. Three 
possibilities:

� Linear: F(i) = i 
� Quadratic: F(i) = i2

� Double Hashing: F(i) = i � Hash2(X)

Open Addressing I: Linear Probing

�
Main Idea: When collision occurs, scan down the 
array one cell at a time looking for an empty cell

� hi(X) = (Hash(X) + i) mod TableSize    (i = 0, 1, 2, …)
� Compute hash value and increment it until a free cell 

is found
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Linear Probing Example

probes:

14

3

2

1

0

6

5

4

insert(14)
14%7 = 0

1

14

8

3

2

1

0

6

5

4

insert(8)
8%7 = 1

1

14

8

21
3

2

1

0

6

5

4

insert(21)
21%7 =0

3

8

12

23

2

1

0

6

5

4

insert(2)
2%7 = 2

2

14

Drawbacks of Linear Probing
�

Works until array is full, but as number of items N 
approaches TableSize (λ ≈ 1), access time approaches O(N)

�
Very prone to cluster formation (as in our example)

� If a key hashes anywhere into a cluster, finding a free cell 
involves going through the entire cluster – and making it 
grow!

� Primary clustering – clusters grow when keys hash to values 
close to each other

�
Can have cases where table is empty except for a few 
clusters

� Does not satisfy good hash function criterion of distributing 
keys uniformly

Load Factor in Linear Probing
�

For any λ < 1, linear probing will find an empty slot
�

Search cost (for large table sizes)
� successful search:

� unsuccessful search:

�
Performance quickly degrades for λ > 1/2

( )
���

�����
−

+ 21

1
1

2

1

λ
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�
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1
1

2

1

Open Addressing II: Quadratic 
Probing

�
Main Idea: Spread out the search for an empty slot –
Increment by i2 instead of i 

�
hi(X) = (Hash(X) + i2) % TableSize  
h0(X) = Hash(X) % TableSize 

h1(X) = Hash(X) + 1 % TableSize

h2(X) = Hash(X) + 4 % TableSize

h3(X) = Hash(X) + 9 % TableSize

Quadratic Probing Example

probes:

14

3

2

1

0

6

5

4

insert(14)
14%7 = 0

1

14

8

3

2

1

0

6

5

4

insert(7)
8%7 = 1

1

14

8

21

3

2

1

0

6

5

4

insert(21)
21%7 =0

3

8

2

21

3

2

1

0

6

5

4

insert(2)
2%7 = 2

1

14

Problem With Quadratic Probing

probes:

14

3

2

1

0

6

5

4

insert(14)
14%7 = 0

1

14

8

3

2

1

0

6

5

4

insert(8)
8%7 = 1

1

14

8

21

3

2

1

0

6

5

4

insert(21)
21%7 =0

3

8

2

21

3

2

1

0

6

5

4

insert(2)
2%7 = 2

1

14

8

2

21

3

2

1

0

6

5

4

insert(7)
7%7 = 0

14

??
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Load Factor in Quadratic Probing
�

Theorem: If TableSize is prime and λ ≤ ½, 
quadratic probing will find an empty slot; for greater 
λ, might not

�
With load factors near ½ the expected number of 
probes is about 1.5

�
Don’ t get clustering from similar keys (primary 
clustering), still get clustering from identical keys 
(secondary clustering)

Monday
�

Double hashing
�

Deletion and rehashing
�

Analysis of memory use
�

Universal hash functions
�

Perfect hashing
�

and answer to the PUZZLER: What is an 
application where it is a good idea to use open 
addressing and not do probing – you just allow 
collisions to occur?


