

## Load Factor in Linear Probing

$>$ For any $\lambda<1$, linear probing will find an empty slot
$>$ Search cost (for large table sizes)

- successful search:

$$
\frac{1}{2}\left(1+\frac{1}{(1-\lambda)}\right)
$$

- unsuccessful search:

$$
\frac{1}{2}\left(1+\frac{1}{(1-\lambda)^{2}}\right)
$$

$>$ Performance quickly degrades for $\lambda>1 / 2$

## Linear Probing - Expected \# of Probes

| Load factor | failure | success |
| :--- | :--- | :--- |
| .1 | 1.11 | 1.06 |
| .2 | 1.28 | 1.13 |
| .3 | 1.52 | 1.21 |
| .4 | 1.89 | 1.33 |
| .5 | 2.5 | 1.50 |
| .6 | 3.6 | 1.75 |
| .7 | 6.0 | 2.17 |
| .8 | 13.0 | 3.0 |
| .9 | 50.5 | 5.5 |

## Open Addressing II: Quadratic Probing

Main Idea: Spread out the search for an empty slot Increment by $\mathrm{i}^{2}$ instead of i
$>\mathrm{h}_{\mathrm{i}}(\mathrm{X})=\left(\operatorname{Hash}(\mathrm{X})+\mathrm{i}^{2}\right) \%$ TableSize
$h 0(X)=\operatorname{Hash}(X) \%$ TableSize
$h 1(X)=\operatorname{Hash}(X)+1 \%$ TableSize
$h 2(X)=\operatorname{Hash}(X)+4 \%$ TableSize
$h 3(X)=\operatorname{Hash}(X)+9 \%$ TableSize

## Quadratic Probing Example



Problem With Quadratic Probing


## Load Factor in Quadratic Probing

$>$ Theorem: If TableSize is prime and $\lambda \leq 1 / 2$, quadratic probing will find an empty slot; for greater $\lambda$, might not
$>$ With load factors near $1 / 2$ the expected number of probes is about 1.5
$>$ Don't get clustering from similar keys (primary clustering), still get clustering from identical keys (secondary clustering)

## Open Addressing III: Double Hashing

$>$ Idea: Spread out the search for an empty slot by using a second hash function

- No primary or secondary clustering
$>\mathrm{h}_{\mathrm{i}}(\mathrm{X})=\left(\operatorname{Hash}_{1}(\mathrm{X})+\mathrm{i} \cdot \operatorname{Hash}_{2}(\mathrm{X})\right) \bmod$ TableSize for $\mathrm{i}=0,1,2, \ldots$
$>$ Good choice of $\operatorname{Hash}_{2}(\mathrm{X})$ can guarantee does not get "stuck" as long as $\lambda<1$
- Integer keys:
$\operatorname{Hash}_{2}(\mathrm{X})=\mathrm{R}-(\mathrm{X} \bmod \mathrm{R})$
where R is a prime smaller than TableSize



## Load Factor in Double Hashing

$>$ For any $\lambda<1$, double hashing will find an empty slot (given appropriate table size and hash ${ }_{2}$ )
$>$ Search cost appears to approach optimal (random hash):

- successful search: $\frac{1}{\lambda} \ln \frac{1}{1-\lambda}$
- unsuccessful search:
$\frac{1}{1-\lambda}$
$>$ No primary clustering and no secondary clustering
$>$ Becomes very costly as $\lambda$ nears 1 . In practice, slower than quadratic probing if $\lambda \leq 1 / 2$.

Deletion with Separate Chaining

Why is this slide blank?

## Deletion in Open Addressing



What should we do instead?

## Lazy Deletion



But now what is the problem?


The Squished Pigeon

## Principle

$>$ An insert using open addressing cannot work with a load factor of 1 or more.

- Quadratic probing can fail if $\lambda>1 / 2$
- Linear probing and double hashing slow if $\lambda>1 / 2$
- Lazy deletion never frees space
$>$ Separate chaining becomes slow once $\lambda>1$
- Eventually becomes a linear search of long chains
$>$ How can we relieve the pressure on the pigeons?
REHASH!


## Rehashing Example

Separate chaining
$\mathrm{h}_{1}(\mathrm{x})=\mathrm{x} \bmod 5$ rehashes to $\mathrm{h}_{2}(\mathrm{x})=\mathrm{x} \bmod 11$
$\lambda=1$

$\lambda=5 / 11$


## Rehashing Amortized

## Analysis

$>$ Consider sequence of n operations
insert(3); insert(19); insert(2); ...
$>$ What is the max number of rehashes? $\log \mathrm{n}$

$>$ What is the total time?

- let's say a regular hash takes time $a$, and rehashing an array contain $k$ elements takes time $b k$.

$$
a n+b(1+2+4+8+\ldots+n)=a n+b \sum_{i=o}^{\log n} 2^{i}
$$

$$
=a n+b(2 n-1)
$$

$>$ Amortized time $=(a n+b(2 n-1)) / n=O(1)$

## Rehashing without Stretching

$>$ Suppose input is a mix of inserts and deletes

- Never more than TableSize/2 active keys
- Rehash when $\lambda=1$ (half the table must be deletions)
$>$ Worst-case sequence:
- T/2 inserts, T/2 deletes, T/2 inserts, Rehash, T/2 deletes, T/2 inserts, Rehash, ..
$>$ Rehashing at most doubles the amount of work still O(1)


## Case Study

> Spelling dictionary

- 30,000 words
- static
- arbitrary(ish) preprocessing time
> Goals
- fast spell checking
- minimal storage
$>$ Practical notes
- almost all searches are Why? successful
words average about 8 characters in length
- 30,000 words at 8 bytes/word is $1 / 4 \mathrm{MB}$
- pointers are 4 bytes
- there are many regularities in the structure of English words


## Solutions

## $>$ Solutions

- sorted array + binary search
- separate chaining
- open addressing + linear probing


## Storage

> Assume words are strings and entries are pointers to strings
Array +

$$
\begin{gathered}
\text { Array }+ \\
\text { binary search }
\end{gathered} \text { Separate chaining } \quad \text { Open addressing }
$$



## Analysis

Binary search

- storage: n pointers + words $=360 \mathrm{~KB}$
- time: $\quad \log _{2} \mathrm{n} \leq 15$ probes per access, worst case
$>$ Separate chaining
- storage: $2 \mathrm{n}+\mathrm{n} / \lambda$ pointers + words $(\lambda=1 \Rightarrow 600 \mathrm{~KB})$
- time: $1+\lambda / 2$ probes per access on average $(\lambda=1 \Rightarrow 1.5)$
- storage: $\mathrm{n} / \lambda$ pointers + words $(\lambda=0.5 \Rightarrow 480 \mathrm{~KB})$
- time: $\frac{1}{2}\left(1+\frac{1}{(1-\lambda)}\right)$ probes per access on average $(\lambda=0.5 \Rightarrow 1.5)$

Which one should we use?

- Given a particular input, pick a hash function parameterized by some random number
- Useful in proving average case results - instead of randomizing over inputs, randomize over choice of hash function
$>$ Minimal perfect hash function: one that hashes a given set of $n$ keys into a table of size $n$ with no collisions
- Always exist
- Might have to search large space of parameterized hash functions to find
- Application: compilers


## A Random Hash...

One way hash functions

- Used in cryptography
- Hard (intractable) to invert: given just the hash value, recover the key


