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CSE 326: Data 
Structures

Lecture #12
Hashing II

Henry Kautz

Winter 2002

Load Factor in Linear Probing

�For any λ < 1, linear probing will find an empty slot
�Search cost (for large table sizes)

� successful search:

� unsuccessful search:

�Performance quickly degrades for λ > 1/2
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Linear Probing – Expected # of Probes

Load factor failure success

.1 1.11 1.06

.2 1.28 1.13

.3 1.52 1.21

.4 1.89 1.33

.5 2.5 1.50

.6 3.6 1.75

.7 6.0 2.17

.8 13.0 3.0

.9 50.5 5.5

Open Addressing II: Quadratic 
Probing

�Main Idea: Spread out the search for an empty slot –
Increment by i2 instead of i 

�hi(X) = (Hash(X) + i2) % TableSize  
h0(X) = Hash(X) % TableSize 

h1(X) = Hash(X) + 1 % TableSize

h2(X) = Hash(X) + 4 % TableSize

h3(X) = Hash(X) + 9 % TableSize

Quadratic Probing Example
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Problem With Quadratic Probing
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Load Factor in Quadratic Probing

�Theorem: If TableSize is prime and λ ≤ ½, 
quadratic probing will find an empty slot; for greater 
λ, might not

�With load factors near ½ the expected number of 
probes is about 1.5

�Don’ t get clustering from similar keys (pr imary
clustering), still get clustering from identical keys 
(secondary clustering)

Open Addressing III: Double Hashing

� Idea: Spread out the search for an empty slot by 
using a second hash function
� No primary or secondary clustering

�hi(X) = (Hash1(X) + i � Hash2(X)) mod TableSize   
for i = 0, 1, 2, … 

�Good choice of Hash2(X) can guarantee does not 
get “stuck”  as long as λ < 1
� Integer keys:

Hash2(X) = R – (X mod R)
where R is a prime smaller than TableSize   

Double Hashing Example
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Double Hashing Example

probes:
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Load Factor in Double Hashing

� For any λ < 1, double hashing will find an empty slot (given 
appropriate table size and hash2)

� Search cost appears to approach optimal (random hash):
� successful search:

� unsuccessful search:

� No primary clustering and no secondary clustering
� Becomes very costly as λ nears 1.  In practice, slower than 

quadratic probing if λ ≤ ½.
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Deletion with Separate Chaining

Why is this slide blank?
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Where is it?!

Deletion in Open Addressing

What should we do instead?
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Indicates deleted value:
if you find it, probe again

Lazy Deletion

But now what is the problem?

The Squished Pigeon 
Principle

�An insert using open addressing cannot work with a 
load factor of 1 or more.
� Quadratic probing can fail if λ > ½

� Linear probing and double hashing slow if λ > ½ 

� Lazy deletion never frees space

�Separate chaining becomes slow once λ > 1
� Eventually becomes a linear search of long chains

�How can we relieve the pressure on the pigeons?

REHASH!

Rehashing Example
Separate chaining

h1(x) = x mod 5 rehashes to h2(x) = x mod 11

λ=1

λ=5/11

1 2 3 4

1 2 3 4 5 6 7 8 9 10

0
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25 37
52

83
98

25 37 83 52 98

Stretchy Stack Amortized
Analysis

� Consider sequence of n operations
push(3); push(19); push(2); …

� What is the max number of stretches?
� What is the total time?

� let’s say a regular push takes time a, and stretching an array 
contain k elements takes time bk.

� Amortized time = (an+b(2n-1))/n = O( 1 )
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Rehashing Amortized
Analysis

� Consider sequence of n operations
insert(3); insert(19); insert(2); …

� What is the max number of rehashes?
� What is the total time?

� let’s say a regular hash takes time a, and rehashing an array 
contain k elements takes time bk.

� Amortized time = (an+b(2n-1))/n = O( 1 )
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Rehashing without Stretching

�Suppose input is a mix of inserts and deletes
� Never more than TableSize/2 active keys

� Rehash when λ=1 (half the table must be deletions)

�Worst-case sequence:
� T/2 inserts, T/2 deletes, T/2 inserts, Rehash, 

T/2 deletes, T/2 inserts, Rehash, …

�Rehashing at most doubles the amount of work –
still O(1)

Case Study

� Spelling dictionary
� 30,000 words

� static

� arbitrary(ish) preprocessing 
time

� Goals
� fast spell checking

� minimal storage

� Practical notes
� almost all searches are 

successful

� words average about 8 
characters in length

� 30,000 words at 8 
bytes/word is 1/4 MB

� pointers are 4 bytes

� there are many regularities 
in the structure of English 
words

Why?

Solutions

�Solutions
� sorted array + binary search

� separate chaining

� open addressing + linear probing

Storage

�Assume words are strings and entries are pointers 
to strings

Array +
binary search Separate chaining

…

Open addressing

n pointers

table size + 2n pointers =
n/λ + 2n n/λ pointers

Analysis

�Binary search
� storage: n pointers + words = 360KB
� time: log2n ≤ 15 probes per access, worst case

�Separate chaining
� storage: 2n + n/λ pointers + words (λ = 1 � 600KB)
� time: 1 + λ/2 probes per access on average (λ = 1 � 1.5)

�Open addressing
� storage: n/λ pointers + words (λ = 0.5 � 480KB)

� time: probes per access on average (λ = 0.5 � 1.5)
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Which one should we use?

A Random Hash…

� Universal hashing
� Given a particular input, pick a hash function parameterized by 

some random number
� Useful in proving average case results – instead of randomizing 

over inputs, randomize over choice of hash function

� Minimal perfect hash function: one that hashes a given set 
of n keys into a table of size n with no collisions
� Always exist
� Might have to search large space of parameterized hash functions

to find
� Application: compilers

� One way hash functions
� Used in cryptography
� Hard (intractable) to invert: given just the hash value, recover the 

key
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Coming Up

�Wednesday: Nick leads the class

�Try all the homework problems BEFORE 
Thursday, so you can ask questions in section!

�Friday: Midterm


