
1

CSE 326: Data Structures
Lecture #13

Priority Queues and Binary
Heaps

Nick Deibel

Winter Quarter 2002

Not Quite Queues

• Consider applications
– ordering CPU jobs

– searching for the exit in a maze

– emergency room admission processing

• Problems?
– short jobs should go first

– most promising nodes should be searched first
– most urgent cases should go first

Priority Queue ADT

• Priority Queue operations
– create

– destroy

– insert

– deleteMin

– is_empty

• Priority Queue property: for two elements in the
queue, x and y, if x has a lower priority value than
y, x will be deleted before y

F(7) E(5)
D(100) A(4)

B(6)

insert deleteMinG(9) C(3)

Applications of the Priority Q

• Hold jobs for a printer in order of length

• Store packets on network routers in order of
urgency

• Sort numbers

• Simulate events

• Anything greedy

Discrete Event Simulation

• An event is a pair (x,t) where x describes the event and t is
time it should occur

• A discrete event simulator (DES) maintains a set S of
events which it intends to simulate in time order

repeat {

Find and remove (x0,t0) from S such that t0 minimal;

Do whatever x0 says to do, in the process new events
(x2,t2)…(xk,tk) may be generated;

Insert the new events into S; }

Emergency Room Simulation
• Two priority queues: time and criticality
• K doctors work in an emergency room
• events:

– patients arrive with injury of criticality C at time t (according to
some probability distribution)

• Processing: if no patients waiting and a free doctor, assign them to
doctor and create a future departure event; else put patient in the
Criticality priority queue

– patient departs
• If someone in Criticality queue, pull out most critical and assign to

doctor

• How long will a patient have to wait? Will people die?

2

Naïve Priority Queue Data
Structures

• Unsorted list:
– insert:

– deleteMin:

• Sorted list:
– insert:

– deleteMin:

BST Tree Priority Queue Data
Structure

4

121062

115

8

14137 9

•Regular BST:
–insert:

–deleteMin:

•AVL Tree:
–insert:

–deleteMin:
Can we do better?

Binary Heap Priority Q Data
Structure

201412911

81067

54

2

• Heap-order property
– parent’s key is less than

children’s keys

– result: minimum is always
at the top

• Structure property
– complete tree with fringe

nodes packed to the left

– result: depth is always
O(log n); next open location
always known

How do we find the minimum?

201412911

81067

54

2

2 4 5 7 6 10 8 11 9 12 14 2012

1 2 3 4 5 6 7 8 9 10 11 12

1

2 3

4 5 6 7

8 9

10 11 12

Nifty Storage Trick
• Calculations:

– child:

– parent:

– root:

– next free:

0

DeleteMin

201412911

81067

54

?
2

201412911

81067

54

2

pqueue. del et eMi n()

Percolate Down

201412911

81067

54

?

201412911

81067

5?

4

201412911

810?7

56

4

201420911

810127

56

4

3

Finally…

1420911

810127

56

4

DeleteMin Code
Obj ect del et eMi n() {

asser t (! i sEmpt y()) ;

r et ur nVal = Heap[1] ;

si ze- - ;

newPos =

per col at eDown(1,

Heap[si ze+1]) ;

Heap[newPos] =

Heap[si ze + 1] ;

r et ur n r et ur nVal ;

}

i nt per col at eDown(i nt hol e,
Obj ect val) {

whi l e (2* hol e <= si ze) {
l ef t = 2* hol e;
r i ght = l ef t + 1;
i f (r i ght <= si ze &&

Heap[r i ght] < Heap[l ef t])
t ar get = r i ght ;

el se
t ar get = l ef t ;

i f (Heap[t ar get] < val) {
Heap[hol e] = Heap[t ar get] ;
hol e = t ar get ;

}
el se

br eak;
}
r et ur n hol e;

}

runtime:

Insert

201412911

81067

54

2

201412911

81067

54

2

pqueue. i nser t (3)

?

Percolate Up

201412911

81067

54

2

? 201412911

8?67

54

2

10

201412911

8567

?4

2

10 201412911

8567

34

2

10

3

3

3

Insert Code
voi d i nser t (Obj ect o) {

asser t (! i sFul l ()) ;

si ze++;

newPos =

per col at eUp(si ze, o) ;

Heap[newPos] = o;

}

i nt per col at eUp(i nt hol e,
Obj ect val) {

whi l e (hol e > 1 &&
val < Heap[hol e/ 2])

Heap[hol e] = Heap[hol e/ 2] ;
hol e / = 2;

}
r et ur n hol e;

}

runtime:

Performance of Binary Heap

• In practice: binary heaps much simpler to code,
lower constant factor overhead

O(log n)O(log n)O(log n)O(log n)Delete
Min

O(log n)O(log n)O(1)

percolates
1.6 levels

O(log n)Insert

AVL tree
avg case

AVL tree
worst case

Binary
heap avg
case

Binary
heap

worst case

4

Changing Priorities

• In many applications the priority of an object in a
priority queue may change over time
– if a job has been sitting in the printer queue for a long

time increase its priority

– unix “ renice”

• Must have some (separate) way of find the
position in the queue of the object to change (e.g.
a hash table)

Other Priority Queue Operations

• decreaseKey
– given the position of an object in the queue, reduce its priority

value

• increaseKey
– given the position of an an object in the queue, increase its priority

value

• remove
– given the position of an an object in the queue, remove it

• buildHeap
– given a set of items, build a heap

DecreaseKey, IncreaseKey, and
Remove

voi d decr easeKey(i nt pos, i nt del t a) {

t emp = Heap[pos] - del t a;

newPos = per col at eUp(pos, t emp) ;

Heap[newPos] = t emp;

}

voi d i ncr easeKey(i nt pos, i nt del t a) {

t emp = Heap[pos] + del t a;

newPos = per col at eDown(pos, t emp) ;

Heap[newPos] = t emp;

}

voi d r emove(i nt pos) {
per col at eUp(pos,

NEG_I NF_VAL) ;
del et eMi n() ;

}

BuildHeap
Floyd’s Method. Thank you, Floyd.

5 11 3 10 6 9 4 8 1 7 212

pretend it’ s a heap and fix the heap-order property!

27184

96103

115

12Easy worst case
bound:

Easy average
case bound:

Build(this)Heap

67184

92103

115

12

671084

9213

115

12

1171084

9613

25

12

1171084

9653

21

12

Finally…

11710812

9654

23

1

runtime?

5

Complexity of Build Heap
• Note: size of a perfect binary tree doubles (+1)

with each additional layer

• At most n/4 percolate down 1 level
at most n/8 percolate down 2 levels
at most n/16 percolate down 3 levels…

O(n)n
nin

n
i

nnn

n

i
i

n

i
i

=≤=

⋅=+⋅+⋅+⋅

�
�

=

=
+

)2(
222

216
3

8
2

4
1

log

1

log

1
1

�

Proof of Summation

211
2

1
1

24

2

4

3

2

1

2

2
12

24

3

2

2
12

22

1

8

3

4

2

2

1

2

1

1

1

1
1

=+≤+≤

������
−++

������
−+

������
−+=−=

++++=

+−++++==

�

�

−

=

−

−
=

x

i
i

x

x

xx

x

i
i

S

x
SSS

x
S

xxi
S

	
	

	

Heap Sort
• Input: unordered array A[1..N]

1. Build a max heap (largest element is A[1])

2. For i = 1 to N-1:
A[N-i+1] = Delete_Max()

7 50 22 15 4 40 20 10 35 25

50 40 20 25 35 15 10 22 4 7

40 35 20 25 7 15 10 22 4 50

35 25 20 22 7 15 10 4 40 50

Properties of Heap Sort

• Worst case time complexity O(n log n)
– Build_heap O(n)

– n Delete_Max’s for O(n log n)

• In-place sort – only constant storage beyond the
array is needed

Thinking about Heaps

• Observations
– finding a child/parent index is a multiply/divide by two

– operations jump widely through the heap

– each operation looks at only two new nodes

– inserts are at least as common as deleteMins

• Realities
– division and multiplication by powers of two are fast
– looking at one new piece of data terrible in a cache line

– with huge data sets, disk accesses dominate

4

9654

23

1

8 1012

7

11

Solution: d-Heaps

• Each node has d children

• Still representable by array

• Good choices for d:
– optimize performance based on #

of inserts/removes

– choose a power of two for
efficiency

– fit one set of children in a cache
line

– fit one set of children on a memory
page/disk block

3 7 2 8 5 121110 6 9112

What do d-heaps
remind us of???

6

Coming Up

• Thursday: Quiz Section is Midterm Review
– Come with questions!

• Friday: Midterm Exam
– Bring pencils

• Monday:
– Mergeable Heaps

– 3rd Programming project

