

Not Quite Queues

- Consider applications
 - ordering CPU jobs
 - searching for the exit in a maze
 - emergency room admission processing
- Problems?
 - short jobs should go first
 - most promising nodes should be searched first
 - most urgent cases should go first

Applications of the Priority Q

- Hold jobs for a printer in order of length
- Store packets on network routers in order of urgency
- · Sort numbers
- · Simulate events
- · Anything greedy

Discrete Event Simulation

- An event is a pair (x,t) where x describes the event and t is time it should occur
- A discrete event simulator (DES) maintains a set S of events which it intends to simulate in time order repeat {

Find and remove (x_0, t_0) from S such that t_0 minimal; Do whatever x_0 says to do, in the process new events $(x_2, t_2)...(x_k, t_k)$ may be generated;

Insert the new events into S; }

Emergency Room Simulation

- Two priority queues: time and criticality
- K doctors work in an emergency room
- events:
 - patients arrive with injury of criticality C at time t (according to some probability distribution)
 Processine: if no patients waiting and a free doctor, assien them to
 - Processing: if no patients waiting and a free doctor, assign them to doctor and create a future departure event; else put patient in the Criticality priority queue
 patient departs
 - If someone in Criticality queue, pull out most critical and assign to doctor
- · How long will a patient have to wait? Will people die?

Performance of Binary Heap				
	Binary heap worst case	Binary heap avg case	AVL tree worst case	AVL tree avg case
Insert	O(log n)	O(1) percolates 1.6 levels	O(log n)	O(log n)
Delete Min	O(log n)	O(log n)	O(log n)	O(log n)

• In practice: binary heaps much simpler to code, lower constant factor overhead

- In many applications the priority of an object in a priority queue may change over time
 - if a job has been sitting in the printer queue for a long time increase its priority
 - unix "renice"
- Must have some (separate) way of find the position in the queue of the object to change (*e.g.* a hash table)

Other Priority Queue Operations

- decreaseKey
 - given the position of an object in the queue, reduce its priority value
- increaseKey
- given the position of an an object in the queue, increase its priority value
- remove
 - given the position of an an object in the queue, remove it
- buildHeap
 - given a set of items, build a heap

Proof of Summation $S = \sum_{i=1}^{x} \frac{i}{2^{i}} = \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \dots + \frac{x-1}{2^{x-1}} + \frac{x}{2^{x}}$ $2S = 1 + \frac{2}{2} + \frac{3}{4} + \dots + \frac{x}{2^{x-1}}$ $S = 2S - S = 1 + \left(\frac{2}{2} - \frac{1}{2}\right) + \left(\frac{3}{4} - \frac{2}{4}\right) + \dots + \left(-\frac{x}{2^{x}}\right)$ $S \le 1 + \sum_{i=1}^{x-1} \frac{1}{2^{i}} \le 1 + 1 = 2$

Heap Sort

Input: unordered array A[1..N]
Build a max heap (largest element is A[1])
For i = 1 to N-1: A[N-i+1] = Delete_Max()

7 50 22 15 4 40 20 10 35 25

50 40 20 25 35 15 10 22 4 7

40 35 20 25 7 15 10 22 4 50

35 25 20 22 7 15 10 4 40 50

Properties of Heap Sort

- Worst case time complexity O(n log n)

 Build_heap O(n)
 - n Delete_Max's for O(n log n)
- In-place sort only constant storage beyond the array is needed

Thinking about Heaps

- Observations
 - finding a child/parent index is a multiply/divide by two
 - operations jump widely through the heap
 - each operation looks at only two new nodes
 - inserts are at least as common as deleteMins
- Realities
 - division and multiplication by powers of two are fast
 - looking at one new piece of data terrible in a cache line
 - with huge data sets, disk accesses dominate

Coming Up

- Thursday: Quiz Section is Midterm Review Come with questions!
- Friday: Midterm Exam
 - Bring pencils
- Monday:

 - Mergeable Heaps
 3rd Programming project