CSE 326: Data Structures
Lecture #13
Priority Queues and Binary
Heaps
Nick Deibel
Winter Quarter 2002

Not Quite Queues

Consider applications

— ordering CPU jobs

— searching for the exit in a maze

— emergency room admission processing
Problems?

— short jobs should go first

— most promising nodes should be sear ched first
— most urgent cases should go first

Priority Queue ADT
« Priority Queue operations
e (1) EE)
_ i F(7) E(5)
_demoy G(g) inset D(100) A(4) |EeEMin o g
— insert B(G)
— deleteMin
— is_empty

« Priority Queue property: for two elementsin the
queue, x and y, if x has alower priority value than
y, X will be deleted beforey

.

.

.

Applications of the Priority Q

Hold jobsfor aprinter in order of length
Store packets on network routersin order of
urgency

Sort numbers

Simulate events

Anything greedy

Discrete Event Simulation

* Aneventisapair (x,t) where x describes the event and t is
time it should occur

A discrete event simulator (DES) maintains a set S of
events which it intends to simulate in time order

repeat {
Find and remove (x,t,) from S such that t, minimal;

Do whatever x, says to do, in the process new events
(Xaity)... (X t,) May be generated;
Insert the new eventsinto S; }

Emergency Room Simulation

Two priority queues: time and criticality
K doctors work in an emergency room
events:
— patients arrive with injury of criticality C a timet (according to
some probability distribution)

* Processing: if no patients waiting and a free doctor, assign them to
doctor and create a future departure event; else put patient in the
Criticality priority queue

— patient departs

« |f someonein Criticality queue, pull out most critical and assign to

doctor

How long will a patient have to wait? Will people die?

Naive Priority Queue Data
Structures

¢ Unsorted list:
— insert:

— deleteMin:

» Sorted list:

— insert:

— deleteMin:

Binary Heap Priority Q Data
Structure

* Heap-order property
— parent’skey islessthan
children’skeys
— result: minimum is aways
a thetop
« Structure property
— complete tree with fringe
nodes packed to the left
— result: depthisaways
O(log n); next open location
aways known

How do we find the minimum?

BST Tree Priority Queue Data

Structure
*Regular BST:

—insert:
—deleteMin:

*AVL Tree
—insert:

—deleteMin:
Can we do better?

Nifty Storage Trick

« Cdculations:
— child:

— parent:
— root:

— next free:

0 1 2 3 4 5 6 7 8 9 10 11 12
‘12‘2‘4‘5‘7‘6‘10‘8‘11‘9‘12‘14‘20‘ ‘

DeleteMin

pqueue. del et eM n()

Percolate Down

DeleteMin Code

Obj ect deleteMn() {
assert (!isEnpty());
returnval = Heap[1];
size--;
newPos =

per col at eDown(1,
Heap[si ze+1]);
Heap[newPos] =
Heap[si ze + 1];
return returnval;

runtime:

int percol at eDown(int hol e,
Obj ect val) {
while (2*hole <= size) {
left = 2*hole;
right = left + 1;
if (right <= size &&
Heap[right] < Heap[left])
target = right;
el se
target = left;

if (Heap[target] < val) {
Heap[hol e] = Heap[target];
hole = target;

el se
br eak;

return hole;

}

Insert

pqueue. i nsert (3)

Percolate Up

Insert Code

void insert(Chject o) {
assert(lisFull());

int percolateUp(int hole,
Ghj ect val) {
while (hole > 1 &&

si ze++;
_ val < Heap[hol e/2])
newPos = Heap[hol €] = Heap[hol e/ 2] ;
per col at eUp(si ze, 0); hole /= 2;
Heap[newPos] = o;
} return hole;

runtime:

Performance of Binary Heap

Min

Binary Binary AVL tree |AVL tree
heap heap avg |worst case |avg case
worst case |Case
Insert O(logn) |0O(1) O(logn) | O(log n)
percolates
1.6 levels
Delete O(logn) |O(logn) |O(logn) |O(logn)

 Inpractice: binary heaps much simpler to code,
lower constant factor overhead

Changing Priorities

« In many applications the priority of an objectina
priority queue may change over time

— if ajob has been sitting in the printer queue for along
time increase its priority
— unix “renice”

¢ Must have some (separate) way of find the

position in the queue of the object to change (e.g.
ahash table)

Other Priority Queue Operations

« decreaseKey

— given the position of an object in the queue, reduceits priority
vaue

¢ increaseKey

— given the position of an an object in the queue, increase its priority
vaue

* remove

— given the position of an an object in the queue, remove it
¢ buildHeap

— given aset of items, build aheap

DecreaseK ey, IncreaseK ey, and
Remove

voi d decreaseKey(int pos, int delta){
tenp = Heap[pos] - delta;

newPos = percol at eUp(pos, tenp); void renove(int pos) {
WP - . per col at eUp(pos,
Feap[newPos] = tenp; NEG | NF_VAL) ;
} del eteM n();

voi d increaseKey(int pos, int delta) {
tenp = Heap[pos] + delta;
newPos = percol at eDown(pos, tenp);
Heap[newPos] = tenp;

}

BuildHeap

Floyd's Method. Thank you, Floyd.

‘12‘5‘11‘3‘10‘6‘9‘4‘8‘1‘7‘2‘
pretend it's a heap and fix the heap-order property!

@

Easy worst case
bound:

Easy average
case bound:

Bui Id(this)Heap

runtime?

Complexity of Build Heap

* Note: size of aperfect binary tree doubles (+1)
with each additional layer

* At most n/4 percolate down 1 level
at most n/8 percolate down 2 levels

a most n/16 percolate down 3 levels...
logn

1d3+2d3+3&+ =>iE

i +1
~')
Iogn i

— Z g 2 =n o)

Proof of Summation
X 1 2 3 x-1 x
S= z 8 .“+F+§

23:1+g+§+...+ X
2 4 2t

S=25-5=1+[2 1] 3—Zj+---+ —X]
2 2) 4 a 3

x-1
s$1+251isl+1:2

Heap Sort

¢ Input: unordered array A[1..N]
1. Build amax heap (largest element is A[1])
2. Fori=1toN-1:
A[N-i+1] = Delete_Max()

[7 [50[22[15] 4 [40[20[10[35[25]

(50[40[20[25[35[15[10[22[4 [7 |

[40[35[20[25] 7 [15[10[22] 4 [50]

[35]25]20[22] 7 [15]10] 4 [40[50]

Properties of Heap Sort

« Worst case time complexity O(n log n)
— Build_heap O(n)
— n Delete_Max’s for O(n log n)

« In-place sort — only constant storage beyond the
array is needed

Thinking about Heaps

* Observations
— finding a child/parent index is a multiply/divide by two
— operations jump widely through the heap
— each operation looks at only two new nodes
— inserts are at least as common as deleteMins
* Regdlities
— division and multiplication by powers of two are fast
— looking at one new piece of dataterrible in a cache line
— with huge data sets, disk accesses dominate

Solution: d-Heaps

Each node has d children
Still representable by array
Good choices for d:

— optimize performance based on #
of insertsremoves

- cht_)o_seapower of two for @ ©@ @ ®© @
efficiency [21]3]7]2]4]8]5]121110 6] 9]

— fit one set of childrenin acache
line

— fit one set of children on amemory What do d-heaps
page/disk block remind us of ???

Coming Up

Thursday: Quiz Section is Midterm Review
— Come with questions!
¢ Friday: Midterm Exam
— Bring pencils
* Monday:
— Mergeable Heaps
— 3 Programming project

