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CSE 326: Data Structures
Lecture #13

Priority Queues and Binary 
Heaps

Nick Deibel

Winter Quarter 2002

Not Quite Queues

• Consider applications
– ordering CPU jobs

– searching for the exit in a maze

– emergency room admission processing

• Problems?
– short jobs should go first

– most promising nodes should be searched first
– most urgent cases should go first

Priority Queue ADT

• Priority Queue operations
– create

– destroy

– insert

– deleteMin

– is_empty

• Priority Queue property: for two elements in the 
queue, x and y, if x has a lower priority value than 
y, x will be deleted before y

F(7) E(5)
D(100) A(4)

B(6)

insert deleteMinG(9) C(3)

Applications of the Priority Q

• Hold jobs for a printer in order of length

• Store packets on network routers in order of 
urgency

• Sort numbers 

• Simulate events

• Anything greedy

Discrete Event Simulation

• An event is a pair (x,t) where x describes the event and t is 
time it should occur

• A discrete event simulator (DES) maintains a set S of 
events which it intends to simulate in time order

repeat {

Find and remove (x0,t0) from S such that t0 minimal;

Do whatever x0 says to do, in the process new events 
(x2,t2)…(xk,tk) may be generated;

Insert the new events into S; }

Emergency Room Simulation 
• Two priority queues: time and criticality
• K doctors work in an emergency room
• events:  

– patients arrive with injury of criticality C at time t (according to 
some probability distribution)

• Processing: if no patients waiting and a free doctor, assign them to 
doctor and create a future departure event; else put patient in the 
Criticality priority queue

– patient departs
• If someone in Criticality queue, pull out most critical and assign to 

doctor

• How long will a patient have to wait?  Will people die?
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Naïve Priority Queue Data 
Structures

• Unsorted list:
– insert:

– deleteMin:

• Sorted list:
– insert:

– deleteMin:

BST Tree Priority Queue Data 
Structure
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•Regular BST:
–insert:

–deleteMin:

•AVL Tree:
–insert:

–deleteMin:
Can we do better?

Binary Heap Priority Q Data 
Structure
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• Heap-order property
– parent’s key is less than 

children’s keys

– result: minimum is always 
at the top

• Structure property
– complete tree with fringe 

nodes packed to the left

– result: depth is always 
O(log n); next open location 
always known

How do we find the minimum?
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Nifty Storage Trick
• Calculations:

– child:

– parent:

– root:

– next free:

0

DeleteMin
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pqueue. del et eMi n( )

Percolate Down
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Finally…
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DeleteMin Code
Obj ect  del et eMi n( )  {

asser t ( ! i sEmpt y( ) ) ;

r et ur nVal = Heap[ 1] ;

si ze- - ;

newPos = 

per col at eDown( 1,

Heap[ si ze+1] ) ;

Heap[ newPos]  = 

Heap[ si ze + 1] ;

r et ur n r et ur nVal ;

}

i nt  per col at eDown( i nt  hol e,
Obj ect  val )  {

whi l e ( 2* hol e <= si ze)  {
l ef t  = 2* hol e;  
r i ght  = l ef t  + 1;
i f  ( r i ght  <= si ze && 

Heap[ r i ght ]  < Heap[ l ef t ] )
t ar get  = r i ght ;

el se
t ar get  = l ef t ;

i f  ( Heap[ t ar get ]  < val )  {
Heap[ hol e]  = Heap[ t ar get ] ;
hol e = t ar get ;

}
el se

br eak;
}
r et ur n hol e;

}

runtime:

Insert
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pqueue. i nser t ( 3)
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Insert Code
voi d i nser t ( Obj ect  o)  {

asser t ( ! i sFul l ( ) ) ;

si ze++;

newPos =

per col at eUp( si ze, o) ;

Heap[ newPos]  = o;

}

i nt  per col at eUp( i nt  hol e,  
Obj ect  val )  {

whi l e ( hol e > 1 &&
val  < Heap[ hol e/ 2] )

Heap[ hol e]  = Heap[ hol e/ 2] ;
hol e / = 2;

}
r et ur n hol e;

}

runtime:

Performance of Binary Heap

• In practice: binary heaps much simpler to code, 
lower constant factor overhead

O(log n)O(log n)O(log n)O(log n)Delete 
Min

O(log n)O(log n)O(1)

percolates 
1.6 levels

O(log n)Insert

AVL tree 
avg case

AVL tree 
worst case

Binary 
heap avg
case

Binary 
heap

worst case
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Changing Priorities

• In many applications the priority of an object in a 
priority queue may change over time
– if a job has been sitting in the printer queue for a long 

time increase its priority

– unix “ renice”

• Must have some (separate) way of find the 
position in the queue of the object to change (e.g.
a hash table)

Other Priority Queue Operations

• decreaseKey 
– given the position of an object in the queue, reduce its priority 

value

• increaseKey
– given the position of an an object in the queue, increase its priority 

value

• remove
– given the position of an an object in the queue, remove it

• buildHeap
– given a set of items, build a heap

DecreaseKey, IncreaseKey, and 
Remove

voi d decr easeKey( i nt pos,  i nt del t a) {

t emp = Heap[ pos]  - del t a;

newPos = per col at eUp( pos,  t emp) ;

Heap[ newPos]  = t emp;

}

voi d i ncr easeKey( i nt  pos,  i nt del t a)  {

t emp = Heap[ pos]  + del t a;

newPos = per col at eDown( pos,  t emp) ;

Heap[ newPos]  = t emp;

}

voi d r emove( i nt  pos)  {
per col at eUp( pos,  

NEG_I NF_VAL) ;
del et eMi n( ) ;

}

BuildHeap
Floyd’s Method. Thank you, Floyd.

5 11 3 10 6 9 4 8 1 7 212

pretend it’ s a heap and fix the heap-order property!

27184

96103
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12Easy worst case 
bound:

Easy average 
case bound:

Build(this)Heap
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Finally… 
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runtime?
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Complexity of Build Heap
• Note: size of a perfect binary tree doubles (+1) 

with each additional layer

• At most n/4 percolate down 1 level
at most n/8 percolate down 2 levels
at most n/16 percolate down 3 levels…
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Heap Sort
• Input: unordered array A[1..N]

1. Build a max heap (largest element is A[1])

2. For i = 1 to N-1:
A[N-i+1] = Delete_Max()

7 50 22 15 4 40 20 10 35 25

50 40 20 25 35 15 10 22 4 7

40 35 20 25 7 15 10 22 4 50

35 25 20 22 7 15 10 4 40 50

Properties of Heap Sort

• Worst case time complexity O(n log n)
– Build_heap O(n)

– n Delete_Max’s for O(n log n)

• In-place sort – only constant storage beyond the 
array is needed

Thinking about Heaps

• Observations
– finding a child/parent index is a multiply/divide by two

– operations jump widely through the heap

– each operation looks at only two new nodes

– inserts are at least as common as deleteMins

• Realities
– division and multiplication by powers of two are fast
– looking at one new piece of data terrible in a cache line

– with huge data sets, disk accesses dominate

4
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Solution: d-Heaps

• Each node has d children

• Still representable by array

• Good choices for d:
– optimize performance based on # 

of inserts/removes

– choose a power of two for 
efficiency

– fit one set of children in a cache 
line

– fit one set of children on a memory 
page/disk block

3 7 2 8 5 121110 6 9112

What do d-heaps 
remind us of???
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Coming Up

• Thursday: Quiz Section is Midterm Review
– Come with questions!

• Friday: Midterm Exam
– Bring pencils

• Monday:
– Mergeable Heaps

– 3rd Programming project


