
1

1

CSE 326: Data Structures
A Sort of Detour

Henry Kautz

Winter Quarter 2002
2

Sorting by Comparison

1. Simple: SelectionSort, BubbleSort

2. Good worst case: MergeSort, HeapSort

3. Good average case: QuickSort

4. Can we do better?

3

Selection Sort Idea

• Are first 2 elements sorted? If not, swap.
• Are the first 3 elements sorted? If not,

move the 3rd element to the left by series of
swaps.

• Are the first 4 elements sorted? If not,
move the 4th element to the left by series of
swaps.
– etc.

4

Selection Sort
pr ocedur e Sel ect i onSor t (Ar r ay[1. . N])

For (i =2 t o N) {
j = i ;
whi l e (j > 0 && Ar r ay[j] < Ar r ay[j - 1]) {

swap(Ar r ay[j] , Ar r ay[j - 1])
j - - ; }

}

Suppose Array is initially sorted?

Suppose Array is reverse sorted?

5

Selection Sort
pr ocedur e Sel ect i onSor t (Ar r ay[1. . N])

For (i =2 t o N) {
j = i ;
whi l e (j > 0 && Ar r ay[j] < Ar r ay[j - 1]) {

swap(Ar r ay[j] , Ar r ay[j - 1])
j - - ; }

}

Suppose Array is initially sorted? O(n)

Suppose Array is reverse sorted? O(n2)

6

Bubble Sort Idea

Slightly rearranged version of selection sort:
• Move smallest element in range 1,…,n to

position 1 by a series of swaps
• Move smallest element in range 2,…,n to

position 2 by a series of swaps
• Move smallest element in range 3,…,n to

position 3 by a series of swaps
– etc.

2

7

Why Selection (or Bubble) Sort
is Slow

• Inversion: a pair (i,j) such that i<j but
Array[i] > Array[j]

• Array of size N can have Θ(N2) inversions
– average number of inversions in a random set

of elements is N(N-1)/4

• Selection/Bubble Sort only swaps adjacent
elements
– only removes 1 inversion!

8

HeapSort: sorting with a priority
queue ADT (heap)

756

27

18
801

35

13

23 44
87

8 13 18 23 27

Shove everything into a queue, take them out
smallest to largest.

Worst Case:

Best Case:

9

HeapSort: sorting with a priority
queue ADT (heap)

756

27

18
801

35

13

23 44
87

8 13 18 23 27

Shove everything into a queue, take them out
smallest to largest.

Worst Case: O(n log n)

Best Case: O(n log n)

Why?

10

MergeSort

Photo from http://www.nrma.com.au/inside-nrma/m-h-m/road-rage.html

Merging Cars by key
[Aggressiveness of driver].
Most aggressive goes first.

MergeSort (Tabl e [1. . n])

Spl i t Tabl e i n hal f
Recur si vel y sor t each hal f
Mer ge t wo hal ves t oget her

Merge (T1[1. . n] , T2[1. . n])

i 1=1, i 2=1
Whi l e i 1<n, i 2<n

I f T1[i 1] < T2[i 2]
Next i s T1[i 1]
i 1++

El se
Next i s T2[i 2]
i 2++

End I f
End Whi l e

11

MergeSort Running Time

T(1) ≤ b

T(n) ≤ 2T(n/2) + cn for n>1

T(n) ≤ 2T(n/2)+cn ≤ 2(2(T(n/4)+cn/2)+cn

= 4T(n/4) +cn +cn ≤ 4(2(T(n/8)+c(n/4))+cn+cn

= 8T(n/8)+cn+cn+cn expand

≤ 2kT(n/2k)+kcn inductive leap

≤ nT(1) + cn log n where k = log n select value for k

= O(n log n) simplify

Any difference
best / worse case?

12

QuickSort

28

15 47<<<< <<<<

<<<< <<<<

<<<< <<<<

Pick a “pivot” . Divide into less-than & greater-than pivot.
Sort each side recursively.

Picture from PhotoDisc.com

3

13

QuickSort Partition
6953827Pick pivot:

Partition
with cursors

6953827

< >

6953827

< >

2 goes to
less-than

14

QuickSort Partition (cont’d)

8953627

< >

6, 8 swap
less/greater-than

89536273,5 less-than
9 greater-than

8953627
Partition done.
Recursively
sort each side.

15

Let’s go to the Races!

16

Analyzing QuickSort

• Picking pivot: constant time

• Partitioning: linear time

• Recursion: time for sorting left partition
(say of size i) + time for right (size N-i-1)
T(1) = b

T(N) = T(i) + T(N-i-1) + cN

where i is the number of elements smaller than the pivot

17

QuickSort
Worst case

Pivot is always smallest element.

T(N) = T(i) + T(N-i-1) + cN

T(N) = T(N-1) + cN

= T(N-2) + c(N-1) + cN

= T(N-k) +

= O(N2)

1

0

()
k

i

c N i
−

=

−
�

18

Dealing with Slow QuickSorts

• Randomly choose pivot
– Good theoretically and practically, but call to

random number generator can be expensive

• Pick pivot cleverly
– “Median-of-3” rule takes Median(first, middle,

last element elements). Also works well.

4

19

QuickSort
Best Case

Pivot is always middle element.

T(N) = T(i) + T(N-i-1) + cN

T(N) = 2T(N/2 - 1) + cN

2 (/ 2)

4 (/ 4) (2 / 2)

8 (/8) (1 1 1)

((/) l go og() l)

T N cN

T N c N N

T N cN

kT N k cN k O N N

< +
< + +
< + + +
< + =

20

QuickSort
Average Case

• Assume all size partitions equally likely,
with probability 1/N

()
0

1

0

1
average value of T(i) or T(N-i-1)

()

is (1/)

(log)

() (1)

() (2) ()

(

/

)
N

j

N

j

T N T i T N i cN

T N N T j

N

j

N

N

O

cN

T

−

=

−

=

= + − − +

= +

=

�

�

details: Weiss pg 278-279

21

Could We Do Better?*

• For any possible correct Sorting by
Comparison algorithm…
– What is lowest best case time?

– What is lowest worst case time?

* (no. sorry.)

22

Best case time

23

Worst case time

• How many comparisons does it take before
we can be sure of the order?

• This is the minimum # of comparisons that
any algorithm could do.

24

Decision tree to sort list A,B,C

A<B

B<C

A<C C
<A

C
<B

B<A

A<C C
<A

B<C C
<B

A<B B<A

A<B
C<B

A,B,C.

A,C,B. C,A,B.

B,A,C. B<A
C<A

B,C,A. C,B,A

Legend
facts Internal node, with facts known so far

A,B,C Leaf node, with ordering of A,B,C
C<A Edge, with result of one comparison

5

25

Max depth of the decision tree

• How many permutations are there of N numbers?

• How many leaves does the tree have?

• What’s the shallowest tree with a given number of leaves?

• What is therefore the worst running time (number of
comparisons) by the best possible sorting algorithm?

26

Max depth of the decision tree

• How many permutations are there of N numbers?

N!

• How many leaves does the tree have?

N!

• What’s the shallowest tree with a given number of leaves?

log(N!)

• What is therefore the worst running time (number of
comparisons) by the best possible sorting algorithm?

log(N!)

27

Stirling’s approximation

n

e

n
nn

��
����

≈ π2!

log(!) log 2

log(2) lo (log)g

n

n

n
n n

e

n
n n n

e

π

π

� ����
≈ 	
	�
	
��� � ����

= + =	
	�
	
�� Ω�
28

Not enough RAM – External
Sorting

• E.g.: Sort 10 billion numbers with 1 MB of
RAM.

• Databases need to be very good at this

29

MergeSort Good for Something!

• Basis for most external sorting routines

• Can sort any number of records using a tiny
amount of main memory
– in extreme case, only need to keep 2 records in

memory at any one time!

30

External MergeSort
• Split input into two tapes
• Each group of 1 records is sorted by

definition, so merge groups of 1 to groups
of 2, again split between two tapes

• Merge groups of 2 into groups of 4
• Repeat until data entirely sorted

log N passes

6

31

Better External MergeSort

• Suppose main memory can hold M records.

• Initially read in groups of M records and
sort them (e.g. with QuickSort).

• Number of passes reduced to log(N/M)

32

Summary
• Sorting algorithms that only compare adjacent elements are

Θ(N2) worst case – but may be Θ(N) best case

• HeapSort and MergeSort - Θ(N log N) both best and worst
case

• QuickSort Θ(N2) worst case but Θ(N log N) best and
average case

• Any comparison-based sorting algorithm is
Ω(N log N) worst case

• External sorting: MergeSort with Θ(log N/M) passes

