CSE 326: Data Structures

A Sort of Detour

Henry Kautz
Winter Quarter 2002

Sorting by Comparison

1. Simple: SelectionSort, BubbleSort
2. Good worst case: MergeSort, HeapSort
3. Good average case: QuickSort
4. Can we do better?

Selection Sort Idea

- Are first 2 elements sorted? If not, swap.
- Are the first 3 elements sorted? If not, move the $3^{\text {rd }}$ element to the left by series of swaps.
- Are the first 4 elements sorted? If not, move the $4^{\text {th }}$ element to the left by series of swaps.
- etc.

Selection Sort

procedure SelectionSort (Array[1..N])
For ($i=2$ to N) \{
j = i;
while (j > 0 \&\& Array[j] < Array[j-1]) \{ swap(Array[j], Array[j-1]) j --; \}
\}
Suppose Array is initially sorted?
Suppose Array is reverse sorted?

Selection Sort

```
procedure SelectionSort (Array[1..N])
For (i=2 to N) {
    j = i;
    while ( j > 0 && Array[j] < Array[j-1] ){
        swap( Array[j], Array[j-1] )
        j --; }
}
Suppose Array is initially sorted? \(\mathrm{O}(\mathrm{n})\)
Suppose Array is reverse sorted? \(O\left(n^{2}\right)\)
```


Bubble Sort Idea

Slightly rearranged version of selection sort:

- Move smallest element in range $1, \ldots, n$ to position 1 by a series of swaps
- Move smallest element in range $2, \ldots, n$ to position 2 by a series of swaps
- Move smallest element in range $3, \ldots, n$ to position 3 by a series of swaps - etc.

Why Selection (or Bubble) Sort is Slow

- Inversion: a pair (i, j) such that $\mathrm{i}<\mathrm{j}$ but Array[i] > Array[j]
- Array of size N can have $\Theta\left(\mathrm{N}^{2}\right)$ inversions - average number of inversions in a random set of elements is $\mathrm{N}(\mathrm{N}-1) / 4$
- Selection/Bubble Sort only swaps adjacent elements
- only removes 1 inversion!

HeapSort: sorting with a priority queue ADT (heap)

Shove everything into a queue, take them out smallest to largest.

HeapSort: sorting with a priority queue ADT (heap)

Shove everything into a queue, take them out smallest to largest.

MergeSort Running Time

$\left.\begin{array}{ll}\mathrm{T}(1) \leq \mathrm{b} & \\ \mathrm{T}(n) \leq 2 \mathrm{~T}(n / 2)+\mathrm{cn} & \text { for } \mathrm{n}>1\end{array} \quad \begin{array}{l}\text { Any difference } \\ \text { best } / \text { worse case ? }\end{array}\right\}$

Pick a "pivot". Divide into less-than \& greater-than pivot Sort each side recursively.

Analyzing QuickSort

- Picking pivot: constant time
- Partitioning: linear time
- Recursion: time for sorting left partition (say of size i) + time for right (size $\mathrm{N}-\mathrm{i}-1$) $\mathrm{T}(1)=\mathrm{b}$

$$
\mathrm{T}(\mathrm{~N})=\mathrm{T}(\mathrm{i})+\mathrm{T}(\mathrm{~N}-\mathrm{i}-1)+\mathrm{cN}
$$

where i is the number of elements smaller than the pivot

Pivot is always smallest element.
$\mathrm{T}(\mathrm{N})=\mathrm{T}(\mathrm{i})+\mathrm{T}(\mathrm{N}-\mathrm{i}-1)+\mathrm{cN}$
$\mathrm{T}(\mathrm{N})=\mathrm{T}(\mathrm{N}-1)+\mathrm{cN}$
$=\mathrm{T}(\mathrm{N}-2)+\mathrm{c}(\mathrm{N}-1)+\mathrm{cN}$
$=\mathrm{T}(\mathrm{N}-\mathrm{k})+c \sum_{i=0}^{k-1}(N-i)$
$=\mathrm{O}\left(\mathrm{N}^{2}\right)$

Dealing with Slow QuickSorts

- Randomly choose pivot
- Good theoretically and practically, but call to random number generator can be expensive
- Pick pivot cleverly
- "Median-of-3" rule takes Median(first, middle, last element elements). Also works well.

QuickSort
 Average Case

- Assume all size partitions equally likely, with probability $1 / \mathrm{N}$
$T(N)=T(i)+T(N-i-1)+c N$
average value of $\mathrm{T}(\mathrm{i})$ or $\mathrm{T}(\mathrm{N}-\mathrm{i}-1)$ is $(1 / N) \sum_{j=0}^{N-1} T(j)$
$T(N)=\left((2 / N) \sum_{j=0}^{N-1} T(j)\right)+c N$
$=O(N \log N)$

Could We Do Better?*

- For any possible correct Sorting by Comparison algorithm...
- What is lowest best case time?
- What is lowest worst case time?
* (no. sorry.)

Best case time

Worst case time

- How many comparisons does it take before we can be sure of the order?
- This is the minimum \# of comparisons that any algorithm could do.

Decision tree to sort list A, B, C

Max depth of the decision tree

- How many permutations are there of N numbers?
- How many leaves does the tree have?
- What's the shallowest tree with a given number of leaves?
- What is therefore the worst running time (number of comparisons) by the best possible sorting algorithm?

Max depth of the decision tree

- How many permutations are there of N numbers? N !
- How many leaves does the tree have? N !
- What's the shallowest tree with a given number of leaves? $\log (\mathrm{N}!)$
- What is therefore the worst running time (number of comparisons) by the best possible sorting algorithm? $\log (\mathrm{N}!)$

Stirling's approximation

$$
\begin{aligned}
& n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \\
& \log (n!) \approx \log \left(\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\right) \\
& =\log (\sqrt{2 \pi n})+\log \left(\left(\frac{n}{e}\right)^{n}\right)=\Omega(n \log n)
\end{aligned}
$$

Not enough RAM - External Sorting

- E.g.: Sort 10 billion numbers with 1 MB of RAM.
- Databases need to be very good at this

MergeSort Good for Something!

- Basis for most external sorting routines
- Can sort any number of records using a tiny amount of main memory
- in extreme case, only need to keep 2 records in memory at any one time!

External MergeSort

- Split input into two tapes
- Each group of 1 records is sorted by definition, so merge groups of 1 to groups of 2, again split between two tapes
- Merge groups of 2 into groups of 4
- Repeat until data entirely sorted

Better External MergeSort

- Suppose main memory can hold M records.
- Initially read in groups of M records and sort them (e.g. with QuickSort).
- Number of passes reduced to $\log (\mathrm{N} / \mathrm{M})$

Summary

- Sorting algorithms that only compare adjacent elements are $\Theta\left(N^{2}\right)$ worst case - but may be $\Theta(N)$ best case
- HeapSort and MergeSort - $\Theta(\mathrm{N} \log \mathrm{N})$ both best and worst case
- QuickSort $\Theta\left(\mathrm{N}^{2}\right)$ worst case but $\Theta(\mathrm{N} \log \mathrm{N})$ best and average case
- Any comparison-based sorting algorithm is $\Omega(\mathrm{N} \log \mathrm{N})$ worst case
- External sorting: MergeSort with $\Theta(\log N / M)$ passes

