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Sorting by Comparison

1. Simple: SelectionSort, BubbleSort

2. Good worst case:  MergeSort, HeapSort

3. Good average case: QuickSort

4. Can we do better?
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Selection Sort Idea

• Are first 2 elements sorted?  If not, swap.
• Are the first 3 elements sorted?  If not, 

move the 3rd element to the left by series of 
swaps.

• Are the first 4 elements sorted?  If not, 
move the 4th element to the left by series of 
swaps.
– etc.
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Selection Sort
pr ocedur e Sel ect i onSor t  ( Ar r ay[ 1. . N] )

For ( i =2 t o N)  {
j  = i ;
whi l e (  j  > 0 && Ar r ay[ j ]  < Ar r ay[ j - 1]  ) {

swap(  Ar r ay[ j ] ,  Ar r ay[ j - 1]  )
j  - - ;  }

}

Suppose Array is initially sorted?

Suppose Array is reverse sorted?
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Selection Sort
pr ocedur e Sel ect i onSor t  ( Ar r ay[ 1. . N] )

For ( i =2 t o N)  {
j  = i ;
whi l e (  j  > 0 && Ar r ay[ j ]  < Ar r ay[ j - 1]  ) {

swap(  Ar r ay[ j ] ,  Ar r ay[ j - 1]  )
j  - - ;  }

}

Suppose Array is initially sorted?     O(n)

Suppose Array is reverse sorted?     O(n2)
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Bubble Sort Idea

Slightly rearranged version of selection sort:
• Move smallest element in range 1,…,n to 

position 1 by a series of swaps
• Move smallest element in range 2,…,n to 

position 2 by a series of swaps
• Move smallest element in range 3,…,n to 

position 3 by a series of swaps
– etc.
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Why Selection (or Bubble) Sort 
is Slow

• Inversion:  a pair (i,j) such that i<j but
Array[i] > Array[j]

• Array of size N can have Θ(N2) inversions
– average number of inversions in a random set 

of elements is N(N-1)/4

• Selection/Bubble Sort only swaps adjacent 
elements
– only removes 1 inversion!
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HeapSort: sorting with a priority 
queue ADT (heap)
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Shove everything into a queue, take them out
smallest to largest.

Worst Case:

Best Case:
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HeapSort: sorting with a priority 
queue ADT (heap)
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Shove everything into a queue, take them out
smallest to largest.

Worst Case: O(n log n)

Best Case: O(n log n)

Why?
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MergeSort

Photo from http://www.nrma.com.au/inside-nrma/m-h-m/road-rage.html

Merging Cars by key
[Aggressiveness of driver].
Most aggressive goes first.

MergeSort ( Tabl e [ 1. . n] )

Spl i t  Tabl e i n hal f
Recur si vel y sor t  each hal f
Mer ge t wo hal ves t oget her

Merge ( T1[ 1. . n] , T2[ 1. . n] )

i 1=1,  i 2=1
Whi l e i 1<n,  i 2<n

I f T1[ i 1]  < T2[ i 2]
Next  i s  T1[ i 1]
i 1++

El se
Next  i s  T2[ i 2]
i 2++

End I f
End Whi l e
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MergeSort Running Time

T(1)  ≤ b

T(n)  ≤ 2T(n/2) + cn for n>1

T(n) ≤ 2T(n/2)+cn     ≤ 2(2(T(n/4)+cn/2)+cn

= 4T(n/4) +cn +cn    ≤ 4(2(T(n/8)+c(n/4))+cn+cn

= 8T(n/8)+cn+cn+cn expand

≤ 2kT(n/2k)+kcn inductive leap

≤ nT(1) + cn log n where k = log n select value for k

= O(n log n) simplify

Any difference 
best / worse case?
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QuickSort
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Pick a “pivot” .  Divide into less-than & greater-than pivot.
Sort each side recursively.

Picture from PhotoDisc.com
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QuickSort Partition
6953827Pick pivot:

Partition
with cursors

6953827

< >

6953827

< >

2 goes to
less-than
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QuickSort Partition (cont’d)

8953627

< >

6, 8 swap
less/greater-than

89536273,5 less-than
9 greater-than

8953627
Partition done.
Recursively
sort each side.
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Let’s go to the Races!
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Analyzing QuickSort

• Picking pivot: constant time

• Partitioning: linear time

• Recursion: time for sorting left partition 
(say of size i) + time for right (size N-i-1)
T(1) = b

T(N)  =  T(i)  +  T(N-i-1)  + cN

where i is the number of elements smaller than the pivot
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QuickSort 
Worst case

Pivot is always smallest element.

T(N) = T(i) + T(N-i-1) + cN

T(N) = T(N-1) + cN

= T(N-2) + c(N-1) + cN

= T(N-k) + 

= O(N2)
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Dealing with Slow QuickSorts

• Randomly choose pivot
– Good theoretically and practically, but call to 

random number generator can be expensive

• Pick pivot cleverly
– “Median-of-3”  rule takes Median(first, middle, 

last element elements).  Also works well.
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QuickSort 
Best Case

Pivot is always middle element.

T(N) = T(i) + T(N-i-1) + cN

T(N) = 2T(N/2 - 1) + cN
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QuickSort
Average Case

• Assume all size partitions equally likely, 
with probability 1/N
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details: Weiss pg 278-279
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Could We Do Better?*

• For any possible correct Sorting by 
Comparison algorithm…
– What is lowest best case time?

– What is lowest worst case time?

* (no. sorry.)
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Best case time
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Worst case time

• How many comparisons does it take before 
we can be sure of the order?

• This is the minimum # of comparisons that 
any algorithm could do.
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Decision tree to sort list A,B,C

A<B

B<C

A<C C
<A

C
<B

B<A

A<C C
<A

B<C C
<B

A<B B<A

A<B
C<B

A,B,C.

A,C,B. C,A,B.

B,A,C. B<A
C<A

B,C,A. C,B,A

Legend
facts Internal node, with facts known so far

A,B,C Leaf node, with ordering of A,B,C
C<A Edge, with result of one comparison



5

25

Max depth of the decision tree

• How many permutations are there of N numbers?

• How many leaves does the tree have?

• What’s the shallowest tree with a given number of leaves?

• What is therefore the worst running time (number of 
comparisons) by the best possible sorting algorithm?
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Max depth of the decision tree

• How many permutations are there of N numbers?

N!

• How many leaves does the tree have?

N!

• What’s the shallowest tree with a given number of leaves?

log(N!)

• What is therefore the worst running time (number of 
comparisons) by the best possible sorting algorithm?

log(N!)
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Stirling’s approximation
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Not enough RAM – External 
Sorting

• E.g.: Sort 10 billion numbers with 1 MB of 
RAM.

• Databases need to be very good at this
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MergeSort Good for Something!

• Basis for most external sorting routines

• Can sort any number of records using a tiny 
amount of main memory
– in extreme case, only need to keep 2 records in 

memory at any one time!
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External MergeSort
• Split input into two tapes
• Each group of 1 records is sorted by 

definition, so merge groups of 1 to groups 
of 2, again split between two tapes

• Merge groups of 2 into groups of 4
• Repeat until data entirely sorted

log N passes
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Better External MergeSort

• Suppose main memory can hold M records.

• Initially read in groups of M records and 
sort them (e.g. with QuickSort).

• Number of passes reduced to log(N/M)
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Summary
• Sorting algorithms that only compare adjacent elements are 

Θ(N2) worst case – but may be Θ(N) best case

• HeapSort and MergeSort - Θ(N log N) both best and worst 
case

• QuickSort Θ(N2) worst case but Θ(N log N) best and 
average case

• Any comparison-based sorting algorithm is 
Ω(N log N) worst case

• External sorting: MergeSort with Θ(log N/M) passes


