CSE 326: Data Structures
Lecture #17
The Dynamic (Equival ence) Duq:
Weighted Union & Path Compression

Henry Kautz

* Winter Quarter 2002

Today’ s Outline

* Making a“good’ maze

« Digoint Set Union/Find ADT
e Up-trees

¢ Weighted Unions

« Path Compression

What’s a Good Maze?

What's a Good Maze?

1. Connected

2. Just one path between any two
rooms

3. Random

The Maze Construction Problem

« Given:
— collection of rooms: V
— connections between rooms (initially all closed): E
« Construct amaze:
— collection of rooms: V' = V
— designated roomsin, i OV, and out, 0OV
— collection of connections to knock down: E' O E
such that one unique path connects every two rooms

The Middle of the Maze

¢ Sofar, anumber of walls have
been knocked down while

others remain.
¢ Now, we consider the wall

between A and B.
¢ Should we knock it down?

When should we not knock it?

Maze Construction Algorithm

While edgesremainin E
©® Remove arandomedgee = (u, v) fromE
How can we do this efficiently?

@If u and v have not yet been connected
- addetoE
- mark u and v as connected
How to check connectedness efficiently?

Equivalence Relations

An equivalence relation R must have three properties
— reflexive:
— symmetric:
— transitive:

Connection between roomsis an equivalence relation
— Why?

Equivalence Relations

An equivalence relation R must have three properties
— reflexive: for any x, xRx istrue
— symmetric: for any x and y, xRy implies yRx
— trangitive: for any x, y, and z, xRy and yRzimplies xRz

Connection between rooms is an equivalence relation
— any room is connected to itself
— if room a is connected to room b, then room b is connected to room a
— if room a is connected to room b and room b is connected to room c,
then room a is connected to room ¢

Digjoint Set Union/Find ADT

name of

set
« Union/Find operations
— create find(4) /4
— destroy > {148 {6 \
— union 8 < { B
— find - {212’:6}
5,9,10} /'
2,3
union(3,6) A —123

» Disjoint set partition property: every element of aDS U/F
structure belongs to exactly one set with a unique name

» Dynamic equivalence property: Union(a, b) creates anew
set which is the union of the sets containing aand b

Example

Congtruct the maze on theright @ »@‘ @
Initial (the name of each setis 6]

underlined):
B OS R OJUR O,
(o]

OIEEOZER0

Order of edges in blue

Randomly select edge 1

Example, First Step
(@{OHAHAHHHIHT D). (5] (®)- [10]-D)
(6]

find(b) = b :
findle) = e . }
find(b) # find(e) so: @ (4] @

add 1to E u] [eo]
union(b, €) . >®‘

Order of edgesin blue

g
[o]
O [=1-

©r

{a{be{cHdH{fH{a{h}{i}

Example, Continued

{aH{be{H{dH{fH{ag{h}Hi} G- <[]0

HROa0E
[=]

BROG)
~]
=] 2]

1

OIEEOSER0

Order of edges in blue

Up-Tree Intuition

Finding the representative member of asetis
somewhat like the opposite of finding whether a
given key existsin a set.

So, instead of using trees with pointers from each
nodeto its children; let’s use trees with a pointer
from each nodeto its parent.

Up-Tree Union-Find
Data Structure

« Each subset isan up-tree
withitsroot asits
representative member
¢ All members of agiven e @ @ @
set arenodesin that set’s
up-tree Q Q
« Hash table maps input
data to the node associated e

with that data
Up-trees are not necessarily binary!

Find
find(f)
find(e) ® @ ®
() @i ;;m
[o] [g
® © G
Just traverse to the root!

runtime:

Union

cf@gC)g ;:i

union(a,c)

@—p)
@O
Q—

el

5]
S
Ofa]

runtime: Just hang one root from the other!

For Y our Reading Pleasure...

The Whole Example (/11 ‘:z
e Whole Example ()E

)
00000000

éiéé ofcXolo

@!Gm@
The Whole Example (2/11) ! 5 .

nnnnn D
éééééééé

G40 0660

The Whole Example (3/11) i ;

&.&.ééééé

‘t.ééééé

®710r©
The Whole Example (4/11) z . i

éééaéé

Whilewe're finding e,
could we do anything else?

find(d) = find(e)
No union!

@+—O10©
The Whole Example (5/ 11)

union(h,i) !.!.»!

éééé éééi

5
The Whole Example (6/11 [6]
Pl §

(o] g
union(c,f)

QOO0 | OQ 00
<5‘ 0

@+—>®1{1©

The Whole Example (7/ 11)
find(e) @ . 9
find(f) o] E
union(a,c) O O ®

2 éﬁ _ A@é

Could we do a ﬂ
better job on this union? @

The Whole Example (8/11) i‘_’x

find(f)
find(i)
union(c,h)

158 [b
A00= @006

oftc offe

i
The Whole Example (9/11
e Whole Example () X

find(e) = find(h) and find(b) = find(c) [9]
So, no unions for either of these. @ ® O,

® ©
The Whole Example(lO/ll)z i ;

find(d)
find(g)
union(c, g) QO—D

50 & Qea

The Whole Example (11/11)

find(g) = find(h)
So, no union.
And, we're done!

@+—®
® OO

()

@—® 6
éﬁ
7o

Q—O—E OO—QO+—E

QO O 5 o

Ooh... scary!
e Such a hard maze!

Nifty storage trick
A forest of up-trees
can easily be stored
inan array. e @ @
Also, if the node
names areintegers G Q

or characters, we

can useavery e l

simple, perfect hash.
1(b) 2(c) 3(d) 4(e) 5(f) 6(q) 7.(h) 8()
windex[4] 0 |40 1] 24| 1] 7]

I mplementation

typedef 1D int;

1D up[10000] ; I D uni on(Chj ect x, Object y)

ID find(oject x) {
{

assert (HashTabl e. contai ns(x));

IDrootx = find(x);
IDrooty = find(y);

ID xID = HashTabl e[x] ; assert(rootx != rooty);
while(up[xID] !=-1) { uply] = x;
xID = up[xID]; }
}
return x| D
}
runtime: O(depth) or ... runtime: O(1)

Room for Improvement:
Weighted Union

¢ Always makestheraot of the larger tree the new root
« Often cuts down on height of the new up-tree

éﬁi 3 ©

0, (& ©
o
Couldwedo a

®
better job on this union?

Weighted union!

Weighted Union Code

typedef IDint;

I D uni on(Cbj ect x, Object y) {

rx = Find(x);

ry = Find(y);

assert(rx !'=ry);

if (weight[rx] > weight[ry]) {
up[ry] =rx;
wei ght[rx] += weight[ry];

}

new runtime of union:

el se {
uplrx] =ry; : -
wel ght [ry] += wei ght [rx]: new runtime of find:
}

}

Weighted Union Find Analysis

« Finds with weighted union are O(max up-tree height)

* But, an up-tree of height h with weighted union must have at
least 2" nodes

Base case: h =0, treehas 2° = 1 node

Induction hypothesis: assumetrue for h < h'

and consider the sequence of unions.

Case 1: Union does not increase max height.

heidh Resulting tree till has = 2" nodes.

o O, 2mxhédt < nand | case2: Union has height b= 1+h, where h =
max height < log n height of each of the input "ﬁ' By induction

. hypothesis each tree has > 2" nodes, so the

* S0, find takes O(10g N) | merged tree has a least 21 nodes. QED.

Alternatives to Weighted Union

« Union by height

¢ Ranked union (cheaper approximation to union by
height)

* See Weiss chapter 8.

Room for Improvement:
Path Compression

« Points everything along the path of afind to the root
» Reduces the height of the entire access path to 1

@©®@®®

@@@@@
@e@

Whilewe'refinding e,

ion!
could we do anything else? Peth compression!

Path Compression Example

find(e)

Path Compression Code

I D find(Object x) {
assert (HashTabl e. cont ai ns(x));
I D xI D = HashTabl e[x] ;
ID hold = xID

while(up[xID !'=-1) {
xI D = up[xID];
}
whil e(up[hold] = -1) {
temp = up[hol dJ; runtime:
up[hold] = xID;
hold = tenp;
}

return xID;

Digression: Inverse Ackermann’s

Let log¥ n=1log (log (log ... (log n)))
—

klogs

Then, let log* n = minimum k such that log® n< 1
How fast does log” n grow?

log" (2)=1

log" (4)=2

log" (16) =3

log® (65536) = 4

log® (2655%) =5 (@ 20,000 digit number!)

log' (2265536) -6

Complex Complexity of
Weighted Union + Path Compression

e Tarjan (1984) proved that m weighted union and
find operations with path commpression on a set
of n elements have worst case complexity

O(mog*(n))
actually even a little better!

e For all practical purposes thisisamortized

congtant time

To Do
¢ Read Chapter 8
« Written homework #6 — out today
— due Wednesday, Feb 20t in class
« Homework #6 (word counting project)
— due Monday, Feb 25t by E-turnin midnight

Coming Up

« Graph Algorithms
— WeissCh 9

