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CSE 326: Data Structures

Lecture #17

The Dynamic (Equivalence) Duo:

Weighted Union & Path Compression

Henry Kautz
Winter Quarter 2002
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POW
BAM!

Today’s Outline

• Making a “good”  maze

• Disjoint Set Union/Find ADT

• Up-trees

• Weighted Unions

• Path Compression

What’s a Good Maze? What’s a Good Maze?

1. Connected

2. Just one path between any two 
rooms

3. Random

The Maze Construction Problem

• Given: 
– collection of rooms: V

– connections between rooms (initially all closed): E

• Construct a maze:
– collection of rooms: V′′′′ = V

– designated rooms in, i ∈∈∈∈V, and out, o∈∈∈∈V

– collection of connections to knock down: E′′′′ ⊆⊆⊆⊆ E

such that one unique path connects every two rooms

The Middle of the Maze

• So far, a number of walls have 
been knocked down while 
others remain.

• Now, we consider the wall 
between A and B.

• Should we knock it down?
When should we not knock it?

A

B
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Maze Construction Algorithm

While edges remain in E
� Remove a random edge e = ( u,  v ) from E

How can we do this efficiently?

� If u and v have not yet been connected
- add e to E′′′′
- mark u and v as connected

How to check connectedness efficiently?

Equivalence Relations

An equivalence relation R must have three properties
– reflexive:

– symmetric:

– transitive:

Connection between rooms is an equivalence relation
– Why?

Equivalence Relations

An equivalence relation R must have three properties
– reflexive: for any x, xRx is true

– symmetric: for any x and y, xRy implies yRx

– transitive: for any x, y, and z, xRy and yRz implies xRz

Connection between rooms is an equivalence relation
– any room is connected to itself

– if room a is connected to room b, then room b is connected to room a
– if room a is connected to room b and room b is connected to room c, 

then room a is connected to room c

Disjoint Set Union/Find ADT

• Union/Find operations
– create
– destroy
– union
– find

• Disjoint set partition property: every element of a DS U/F 
structure belongs to exactly one set with a unique name

• Dynamic equivalence property: Union(a, b) creates a new 
set which is the union of the sets containing a and b

{ 1,4,8}

{ 7}

{ 6}

{ 5,9,10}
{ 2,3}

find(4)

8

union(3,6)

{ 2,3,6}

name of 
set

Example

Construct the maze on the right

Initial (the name of each set is 
underlined):

{ a} { b} { c} { d} { e} { f} { g} { h} { i}

Randomly select edge 1

Order of edges in blue

a

d

b

e

c

f

g h i

3

2

4

11

10

1

7

9

6

8

12 5

Example, First Step

{ a} { b} { c} { d} { e} { f} { g} { h} { i}

find(b) � b

find(e) � e

find(b) ≠ find(e) so:
add 1 to E′′′′
union(b, e)

{ a} { b,e} { c} { d} { f} { g} { h} { i}

a

d

b

e

c

f

g h i

Order of edges in blue

3

2

4

11

10

1

7

9

6

8

12 5
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Example, Continued

{ a} { b,e} { c} { d} { f} { g} { h} { i}

Order of edges in blue

a

d

b

e

c

f

g h i

3

2

4

11

10

7

9

6

8

12 5

Up-Tree Intuition

Finding the representative member of a set is 
somewhat like the opposite of finding whether a 

given key exists in a set.

So, instead of using trees with pointers from each 
node to its children; let’s use trees with a pointer 

from each node to its parent.

Up-Tree Union-Find 
Data Structure

• Each subset is an up-tree 
with its root as its 
representative member

• All members of a given 
set are nodes in that set’s 
up-tree

• Hash table maps input 
data to the node associated 
with that data

a c g h

d b

e

Up-trees are not necessarily binary!

f i

Find

a c g h

d b

e

f i

find(f)
find(e)

a

d

b

e

c

f

g h i

11

10

7

9 8

12

Just traverse to the root!runtime:

Union

a c g h

d b

e

f i

union(a,c)

a

d

b

e

c

f

g h i

11

10

9 8

12

Just hang one root from the other!runtime:

For Your Reading Pleasure...
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The Whole Example (1/11)

e

f g ha b c d i

union(b,e)

e f g ha b c d i

a

d

b

e

c

f

g h i

3

2

4

11

10

1

7

9

6

8

12 5

The Whole Example (2/11)

union(a,d)

a

d

b

e

c

f

g h i

3

2

4

11

10

7

9

6

8

12 5

e

f g ha b c d i

f g ha b c i

d e

The Whole Example (3/11)

union(a,b)

a

d

b

e

c

f

g h i

3

4

11

10

7

9

6

8

12 5

f g ha b c i

d e

f g ha

b

c i

d

e

The Whole Example (4/11)

find(d) = find(e)
No union!

a

d

b

e

c

f

g h i

4

11

10

7

9

6

8

12 5

f g ha

b

c i

d

e

While we’ re finding e, 
could we do anything else?

The Whole Example (5/11)

union(h,i)

a

d

b

e

c

f

g h i

11

10

7

9

6

8

12 5

f g ha

b

c i

d

e

f g ha

b

c

id

e

The Whole Example (6/11)

union(c,f)

a

d

b

e

c

f

g h i

11

10

7

9

6

8

12

f g ha

b

c

id

e

f

g ha

b

c

id

e
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The Whole Example (7/11)
find(e)
find(f)
union(a,c)

a

d

b

e

c

f

g h i

11

10

7

9 8

12

f

g ha

b

c

id

e

f

g h

a

b

c

i

d

e
Could we do a 
better job on this union?

The Whole Example (8/11)
a

d

b

e

c

f

g h i

11

10

9 8

12

f

g

ha

b

c

id

e

f

g h

a

b

c

i

d

e

find(f)
find(i)
union(c,h)

The Whole Example (9/11)

find(e) = find(h) and find(b) = find(c)
So, no unions for either of these.

a

d

b

e

c

f

g h i

11

10

9

12

f

g

ha

b

c

id

e

The Whole Example (10/11)
find(d)
find(g)
union(c, g)

a

d

b

e

c

f

g h i

11

12

f

g

ha

b

c

id

e

f

g

ha

b

c

id

e

The Whole Example (11/11)
find(g) = find(h) 
So, no union.
And, we’ re done!

a

d

b

e

c

f

g h i12

f

g

ha

b

c

id

e

a

d

b

e

c

f

g h i

Ooh… scary!
Such a hard maze!

f

g ha

b

c

id

e

0 -1 0 1 2 -1 -1 7-1

0 (a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (f) 6 (g) 7 (h) 8 (i)

Nifty storage trick
A forest of up-trees 

can easily be stored 
in an array.

Also, if the node 
names are integers 
or characters, we 
can use a very 
simple, perfect hash.

up-index:
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Implementation

I D f i nd( Obj ect  x)  

{

asser t ( HashTabl e. cont ai ns( x) ) ;

I D xI D = HashTabl e[ x] ;

whi l e( up[ xI D]  ! = - 1)  {

xI D = up[ xI D] ;

}

r et ur n xI D;

}

I D uni on( Obj ect  x,  Obj ect  y )  

{

I D r oot x = f i nd( x) ;

I D r oot y = f i nd( y) ;

asser t ( r oot x ! = r oot y) ;

up[ y]  = x ;

}

t ypedef  I D i nt ;
I D up[ 10000] ;

runtime: O(depth) or … runtime: O(1)

Room for Improvement:
Weighted Union

• Always makes the root of the larger tree the new root

• Often cuts down on height of the new up-tree

f

g ha

b

c

id

e

f

g h

a

b

c

i

d

eCould we do a 
better job on this union? Weighted union!

f

g ha

b c id

e

Weighted Union Code

I D uni on( Obj ect  x,  Obj ect  y )  {

r x = Fi nd( x) ;

r y = Fi nd( y) ;

asser t ( r x  ! = r y) ;

i f  ( wei ght [ r x]  > wei ght [ r y] )  {

up[ r y]  = r x;

wei ght [ r x]  += wei ght [ r y ] ;

}

el se {

up[ r x]  = r y;

wei ght [ r y]  += wei ght [ r x ] ;

}

}

t ypedef  I D i nt ;

new runtime of union:

new runtime of find:

Weighted Union Find Analysis

• Finds with weighted union are O(max up-tree height)

• But, an up-tree of height h with weighted union must have at 
least 2h nodes

• ∴, 2max height ≤ n and

max height ≤ log n

• So, find takes O(log n)

Base case: h = 0, tree has 20 = 1 node
Induction hypothesis: assume true for h < h′
and consider the sequence of unions.
Case 1: Union does not increase max height.  
Resulting tree still has ≥ 2h nodes.
Case 2: Union has height h’= 1+h, where h = 
height of each of the input trees.  By induction 
hypothesis each tree has ≥ 2h′-1 nodes, so the 
merged tree has at least 2h′ nodes. QED.

Alternatives to Weighted Union

• Union by height

• Ranked union (cheaper approximation to union by 
height)

• See Weiss chapter 8.

Room for Improvement: 
Path Compression

f g ha
b

c i
d

e

While we’re finding e, 
could we do anything else?

• Points everything along the path of a find to the root

• Reduces the height of the entire access path to 1

f g ha
b

c i
d

e

Path compression!
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Path Compression Example

f ha

b

c

d

e

g

find(e)

i

f ha

c

d

e

g

b

i

Path Compression Code
I D f i nd( Obj ect  x)  {

asser t ( HashTabl e. cont ai ns( x) ) ;

I D xI D = HashTabl e[ x] ;

I D hol d = xI D;

whi l e( up[ xI D]  ! = - 1)  {

xI D = up[ xI D] ;

}

whi l e( up[ hol d]  ! = - 1)  {

t emp = up[ hol d] ;

up[ hol d]  = xI D;

hol d = t emp;

}

r et ur n xI D;

}

runtime:

Digression: Inverse Ackermann’s

Let log(k) n = log (log (log … (log n)))

Then, let log* n = minimum k such that log(k) n ≤ 1
How fast does log* n grow? 

log* (2) = 1
log* (4) = 2
log* (16) = 3
log* (65536) = 4
log* (265536) = 5   (a 20,000 digit number!)
log* (2265536

) = 6

k logs

Complex Complexity of 
Weighted Union + Path Compression

• Tarjan (1984) proved that m weighted union and 
find operations with path commpression on a set 
of n elements have worst case complexity 

O(m⋅ log*(n))
actually even a little better!

• For all practical purposes this is amortized 
constant time

To Do
• Read Chapter 8
• Written homework #6 – out today

– due Wednesday, Feb 20th in class

• Homework #6 (word counting project)
– due Monday, Feb 25th by E-turnin midnight

• Graph Algorithms
– Weiss Ch 9

Coming Up


