

What's a Good Maze?

- 1. Connected
- 2. Just one path between any two rooms
- 3. Random

The Maze Construction Problem

• Given:

- collection of rooms: ${\bf v}$
- connections between rooms (initially all closed): ${\ensuremath{\textbf{E}}}$
- Construct a maze:
 - collection of rooms: $\mathbf{V}^{\prime} = \mathbf{V}$
 - designated rooms in, $\mathtt{i} {\in} \mathtt{V},$ and out, $\mathtt{o} {\in} \mathtt{V}$
 - collection of connections to knock down: $\mathbf{E}' \subseteq \mathbf{E}$ such that one unique path connects every two rooms

While edges remain in \mathbf{E}

- Remove a random edge e = (u, v) from E How can we do this efficiently?
- $\ensuremath{ 2 \ensuremath{ 0 \ } \ensuremath{ 1 \ } \ensuremath{ 1 \ } \ensuremath{ 0 \ } \ensuremath{ 2 \ } \ensuremath{ 1 \ } \ensuremath{ 2 \ } \ensuremath{ 1 \ } \ensuremath{ 1 \ } \ensuremath{ 2 \ } \ensuremath{ 2 \ } \ensuremath{ 1 \ } \ensuremath{ 1 \ } \ensuremath{ 2 \ } \ensuremath{ 2 \ } \ensuremath{ 1 \ } \ensuremath{ 2 \ } \ensuremath{ 2$
 - add e to E'
 mark u and v as connected
 - How to check connectedness efficiently?

Equivalence Relations

An equivalence relation R must have three properties

- reflexive:
- symmetric:
- transitive:

Connection between rooms is an equivalence relation – *Why*?

An equivalence relation R must have three properties

- reflexive: for any *x*, *x*R*x* is true
- symmetric: for any x and y, xRy implies yRx
- transitive: for any x, y, and z, xRy and yRz implies xRz

Connection between rooms is an equivalence relation

- any room is connected to itself
- if room a is connected to room b, then room b is connected to room a
 if room a is connected to room b and room b is connected to room c,
- if room a is connected to room b and room b is connected t then room a is connected to room c

<pre>Impleme. typedef ID int; ID up[10000]; ID find(Object x) { assert(HashTable.contains(x)); ID xID = HashTable[x]; while(up[xID] != -1) { xID = up[xID]; } return xID; }</pre>	<pre>ntation ID union(Object x, Object y) { ID rootx = find(x); ID rooty = find(y); assert(rootx != rooty); up[y] = x; }</pre>
runtime: O(depth) or	runtime: O(1)

- Union by height
- Ranked union (cheaper approximation to union by height)
- See Weiss chapter 8.

Digression: Inverse Ackermann's

Let $\log^{(k)} n = \log (\log (\log \dots (\log n)))$

k logs

Then, let $\log^* n = \min k$ such that $\log^{(k)} n \le 1$ *How fast does \log^* n grow?* $\log^* (2) = 1$ $\log^* (4) = 2$ $\log^* (16) = 3$ $\log^* (65536) = 4$ $\log^* (2^{65536}) = 5$ (a 20,000 digit number!) $\log^* (2^{265536}) = 6$

Complex Complexity of Weighted Union + Path Compression

 Tarjan (1984) proved that *m* weighted union and find operations with path commpression on a set of *n* elements have worst case complexity O(*m*· log*(*n*))

actually even a little better!

• For **all** practical purposes this is amortized constant time

To Do

- Read Chapter 8
- Written homework #6 out today
 due Wednesday, Feb 20th in class
- Homework #6 (word counting project)

 due Monday, Feb 25th by E-turnin midnight

Coming Up

• Graph Algorithms - Weiss Ch 9