

Today's Outline

The Middle of the Maze

- So far, a number of walls have been knocked down while others remain.
- Now, we consider the wall between A and B.
- Should we knock it down? When should we not knock it?

Equivalence Relations

An equivalence relation R must have three properties

- reflexive: for any $x, x \mathrm{R} x$ is true
- symmetric: for any x and $y, x \mathrm{R} y$ implies $y \mathrm{R} x$
- transitive: for any x, y, and $z, x \mathrm{R} y$ and $y \mathrm{R} z$ implies $x \mathrm{R} z$

Connection between rooms is an equivalence relation

- any room is connected to itself
- if room \mathbf{a} is connected to room \mathbf{b}, then room \mathbf{b} is connected to room \mathbf{a}
- if room \mathbf{a} is connected to room \mathbf{b} and room \mathbf{b} is connected to room \mathbf{c}, then room \mathbf{a} is connected to room \mathbf{c}

Equivalence Relations

An equivalence relation R must have three properties

- reflexive:
- symmetric:
- transitive:

Connection between rooms is an equivalence relation - Why?

- Disjoint set partition property: every element of a DS U/F structure belongs to exactly one set with a unique name
- Dynamic equivalence property: Union(a, b) creates a new set which is the union of the sets containing a and b

Up-Tree Intuition

Finding the representative member of a set is somewhat like the opposite of finding whether a given key exists in a set.

So, instead of using trees with pointers from each node to its children; let's use trees with a pointer from each node to its parent.

Up-Tree Union-Find Data Structure

- Each subset is an up-tree with its root as its representative member
- All members of a given set are nodes in that set's up-tree

- Hash table maps input data to the node associated
 with that data

For Your Reading Pleasure...

Room for Improvement: Weighted Union

- Always makes the root of the larger tree the new root
- Often cuts down on height of the new up-tree

Weighted Union Find Analysis

- Finds with weighted union are O (max up-tree height)
- But, an up-tree of height h with weighted union must have at least 2^{h} nodes

Base case: $h=0$, tree has $2^{0}=1$ node
Induction hypothesis: assume true for $h<h^{\prime}$ and consider the sequence of unions. Case 1: Union does not increase max height.
Resulting tree still has $\geq 2^{h}$ nodes.
Case 2: Union has height $h^{\prime}=1+h$, where \max height $\leq \log n \quad \begin{aligned} & \text { height of each of the input trees. By induction }\end{aligned}$

- So, find takes $\mathrm{O}(\log n) \left\lvert\, \begin{aligned} & \text { hypothesis each tree has } \geq 2^{h^{\prime-1}-1} \text { nodes, so } \\ & \text { merged tree has at least } 2^{h^{\prime}} \text { nodes. QED. }\end{aligned}\right.$

Alternatives to Weighted Union

- Union by height
- Ranked union (cheaper approximation to union by height)
- See Weiss chapter 8 .

Room for Improvement:
 Path Compression

- Points everything along the path of a find to the root
- Reduces the height of the entire access path to 1

Path compression!

Digression: Inverse Ackermann's

$$
\text { Let } \log ^{(k)} \mathrm{n}=\underbrace{\log (\log (\log \ldots(\log \mathrm{n})))}_{k \log \mathrm{~s}}
$$

Then, let $\log ^{*} \mathrm{n}=$ minimum k such that $\log ^{(k)} \mathrm{n} \leq 1$
How fast does $\log ^{*} n$ grow?
$\log ^{*}(2)=1$
$\log ^{*}(4)=2$
$\log ^{*}(16)=3$
$\log ^{*}(65536)=4$
$\log ^{*}\left(2^{65536}\right)=5 \quad$ (a 20,000 digit number!)
$\log ^{*}\left(2^{26536}\right)=6$

Path Compression Code

ID find (Object x)
assert (HashTable contains (x)) ;
ID xID = HashTable[x];
ID hold = xID;
while (up [xID] !=-1) \{
xID $=u p[x I D] ;$
\}
while (up [hold] != -1) \{
temp $=$ up [hold] ; runtime:
up [hold $]=$ xID;
hold = temp;
\}
return xID;
\}
Complex Complexity of
Weighted Union + Path Compression

- Tarjan (1984) proved that m weighted union and
find operations with path commpression on a set
of n elements have worst case complexity
$\mathrm{O}\left(m \cdot \log ^{*}(n)\right)$
actually even a little better!
- For all practical purposes this is amortized
constant time

Complex Complexity of

 Weighted Union + Path Compression- Tarjan (1984) proved that m weighted union and find operations with path commpression on a set of n elements have worst case complexity
$\mathrm{O}\left(m \cdot \log ^{*}(n)\right)$
actually even a little better!
- For all practical purposes this is amortized constant time

