
1

CSE 326: Data Structures
Lecture #16

Graphs I: DFS & BFS

Henry Kautz

Winter Quarter 2002

Midterm

Mean: 77

Std. Dev: 11

High score: 94

midterm

0

5

10

15

20

25

52-60 61-70 71-80 81-90 91-100

Outline

• Graphs (TO DO: READ WEISS CH 9)

• Graph Data Structures

• Graph Properties

• Topological Sort

• Graph Traversals
– Depth First Search

– Breadth First Search

– Iterative Deepening Depth First

• Shortest Path Problem
– Dijkstra’s Algorithm

Graph ADT
Graphs are a formalism for representing

relationships between objects
– a graph G is represented as

G = (V, E)

• V is a set of vertices

• E is a set of edges

– operations include:
• iterating over vertices

• iterating over edges

• iterating over vertices adjacent to a specific vertex

• asking whether an edge exists connected two vertices

Han

Leia

Luke

V = { Han, Lei a, Luke}
E = { (Luke, Lei a) ,

(Han, Lei a) ,
(Lei a, Han) }

What Graph is THIS? ReferralWeb
(co-authorship in scientific papers)

2

Biological Function Semantic Network Graph Representation 1:
Adjacency Matrix

A | V| x | V| array in which an element (u, v)

is true if and only if there is an edge from u to v

Han

Leia

Luke

Han Luke Leia

Han

Luke

LeiaRuntime:
iterate over vertices
iterate ever edges
iterate edges adj. to vertex
edge exists?

Space requirements:

Graph Representation 2:
Adjacency List

A | V| -ary list (array) in which each entry stores a
list (linked list) of all adjacent vertices

Han

Leia

Luke
Han

Luke

Leia

space requirements:

Runtime:
iterate over vertices
iterate ever edges
iterate edges adj. to vertex
edge exists?

Directed vs. Undirected Graphs

Han

Leia

Luke

Han

Leia

Luke

• In directed graphs, edges have a specific direction:

• In undirected graphs, they don’ t (edges are two-way):

• Vertices u and v are adjacent if (u, v) ∈∈∈∈ E

Graph Density

A sparse graph has O(|V|) edges

A dense graph has Θ(|V|2) edges

Anything in between is either sparsish or densy depending on the context.

Weighted Graphs

20

30

35

60

Mukilteo

Edmonds

Seattle

Bremerton

Bainbridge

Kingston

Clinton

There may be more
information in the graph as well.

Each edge has an associated weight or cost.

3

Paths and Cycles
A path is a list of vertices { v1, v2, …, vn} such

that (v i , v i +1) ∈∈∈∈ E for all 0 ≤≤≤≤ i < n.
A cycle is a path that begins and ends at the same

node.

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

p = {Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle}

Path Length and Cost

Path length: the number of edges in the path

Path cost: the sum of the costs of each edge

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

3.5

2 2

2.5

3

2
2.5

2.5

length(p) = 5 cost(p) = 11.5

Connectivity
Undirected graphs are connected if there is a path between

any two vertices

Directed graphs are strongly connected if there is a path from
any one vertex to any other

Directed graphs are weakly connected if there is a path
between any two vertices, ignoring direction

A complete graph has an edge between every pair of vertices

Trees as Graphs

• Every tree is a graph with
some restrictions:
– the tree is directed

– there are no cycles (directed
or undirected)

– there is a directed path from
the root to every node

A

B

D E

C

F

HG

JI

BAD!

Directed Acyclic Graphs (DAGs)

DAGs are directed
graphs with no
cycles.

mai n()

add()

access()

mul t ()

r ead()

Trees ⊂ DAGs ⊂ Graphs

if program call
graph is a DAG,
then all
procedure calls
can be in-lined

Application of DAGs:
Representing Partial Orders

check in
airport

call
taxi

taxi to
airport

reserve
flight

pack
bagstake

flight

locate
gate

4

Topological Sort

Given a graph, G = (V, E) , output all the vertices
in V such that no vertex is output before any other
vertex with an edge to it.

check in
airport

call
taxi

taxi to
airport

reserve
flight

pack
bags

take
flight

locate
gate

Topo-Sort Take One

Label each vertex’s in-degree (# of inbound edges)

While there are vertices remaining

Pick a vertex with in-degree of zero and output it

Reduce the in-degree of all vertices adjacent to it

Remove it from the list of vertices

runtime:

Topo-Sort Take Two

Label each vertex’s in-degree

Initialize a queue (or stack) to contain all in-degree zero
vertices

While there are vertices remaining in the queue

Remove a vertex v with in-degree of zero and output it

Reduce the in-degree of all vertices adjacent to v

Put any of these with new in-degree zero on the queue

runtime:

Recall: Tree Traversals

a

i

d

h j

b

f

k l

ec

g

a b f g k c d h i l j e

Depth-First Search

• Both Pre-Order and Post-Order traversals are
examples of depth-first search
– nodes are visited deeply on the left-most branches

before any nodes are visited on the right-most branches
• visiting the right branches deeply before the left would still be

depth-first! Crucial idea is “ go deep first!”

• In DFS the nodes “being worked on” are kept on a
stack (where?)

• Recursion is a clue that DFS may be lurking…

Level-Order Tree Traversal
• Consider task of traversing tree level by level from top to

bottom (alphabetic order)

• Is this also DFS? a

i

d

h j

b

f

k l

ec

g

5

Breadth-First Search

• No! Level-order traversal is an example of Breadth-First
Search

• BFS characteristics
– Nodes being worked on maintained in a FIFO Queue, not a stack
– Iterative styleprocedures often easier to design than recursive

procedures

Put root in a Queue
Repeat until Queue is empty:

Dequeue a node
Process it
Add it’ s children to queue

QUEUE

a
b c d e
c d e f g
d e f g
e f g h i j
f g h i j
g h i j
h i j k
i j k
j k l
k l
l

a

i

d

h j

b

f

k l

ec

g

Graph Traversals
• Depth first search and breadth first search also work for

arbitrary (directed or undirected) graphs
– Must mark visited vertices so you do not go into an infinite

loop!

• Either can be used to determine connectivity:
– Is there a path between two given vertices?

– Is the graph (weakly) connected?

• Important difference: Breadth-first search always finds
a shortest path from the start vertex to any other (for
unweighted graphs)
– Depth first search may not!

Demos

DFS

BFS

Single Source, Shortest Path for
Weighted Graphs

Given a graph G = (V, E) with edge costs c(e),
and a vertex s ∈∈∈∈ V, f ind the shortest (lowest cost)
path from s to every vertex in V

• Graph may be directed or undirected
• Graph may or may not contain cycles
• Weights may be all positive or not
• What is the problem if graph contains cycles

whose total cost is negative?

The Trouble with
Negative Weighted Cycles

A B

C D

E

2 10

1-5

2

6

Edsger Wybe Dijkstra

Legendary figure in computer science;
now a professor at University of Texas.

Supports teaching introductory computer courses
without computers (pencil and paper programming)

Also famout for refusing to read e-mail; his staff has
to print out messages and put them in his mailbox.

Dijkstra’s Algorithm for
Single Source Shortest Path

• Classic algorithm for solving shortest path in
weighted graphs (with only positive edge weights)

• Similar to breadth-first search, but uses a priority
queue instead of a FIFO queue:
– Always select (expand) the vertex that has a lowest-cost

path to the start vertex
– a kind of “ greedy” algorithm

• Correctly handles the case where the lowest-cost
(shortest) path to a vertex is not the one with
fewest edges

Pseudocode for Dijkstra

Initialize the cost of each vertex to ∞
cost[s] = 0;
heap.insert(s);
While (! heap.empty())

n = heap.deleteMin()
For (each vertex a which is adjacent to n along edge e)

if (cost[n] + edge_cost[e] < cost[a]) then
cost [a] = cost[n] + edge_cost[e]
previous_on_path_to[a] = n;
if (a is in the heap) then heap.decreaseKey(a)

else heap.insert(a)

Important Features

• Once a vertex is removed from the head, the cost
of the shortest path to that node is known

• While a vertex is still in the heap, another shorter
path to it might still be found

• The shortest path itself from s to any node a can
be found by following the pointers stored in
previous_on_path_to[a]

Dijkstra’s Algorithm in Action

A

C

B

D

F H

G

E

2 2 3

2
1

1

4
10

8

1
1

9
4

2

7

vertex known cost
A

B

C

D

E

F

G

H

Demo

Dijkstra’s

7

Data Structures
for Dijkstra’s Algorithm

Select the unknown node with the lowest cost

findMin/deleteMin

a’ s cost = min(a’ s old cost, …)

decreaseKey

| V| times:

| E| times:

runtime: O(|E| log |V|)

O(log |V|)

O(log |V|)

Dijkstra’s uses | V| deleteMins and | E| decreaseKeys

runtime with Fibonacci heaps: O(|E| + |V| log |V|)

for dense graphs, asymptotically better than O(|E| log |V|)

Fibonacci Heaps

• A complex version of heaps - Weiss 11.4

• Used more in theory than in practice

• Amortized O(1) time bound for decreaseKey

• O(log n) time for deleteMin

