CSE 326: Data Structures

Lecture \#16 Graphs I: DFS \& BFS

Henry Kautz
Winter Quarter 2002

Outline

- Graphs (TO DO: READ WEISS CH 9)
- Graph Data Structures
- Graph Properties
- Topological Sort
- Graph Traversals
- Depth First Search
- Breadth First Search
- Iterative Deepening Depth First
- Shortest Path Problem
- Dijkstra's Algorithm

Graph Representation 2:

Adjacency List
A $|\mathrm{v}|$-ary list (array) in which each entry stores a list (linked list) of all adjacent vertices

Runtime:
iterate over vertices
iterate ever edges
iterate edges adj. to vertex edge exists?

Graph Representation 1:
 Adjacency Matrix

$\mathrm{A}|\mathrm{v}| \mathbf{x}|\mathrm{v}|$ array in which an element (u, v) is true if and only if there is an edge from \mathbf{u} to \mathbf{v}

Runtime:
iterate over vertices

iterate ever edges iterate edges adj. to vertex edge exists?

Directed vs. Undirected Graphs

- In directed graphs, edges have a specific direction:

- In undirected graphs, they don't (edges are two-way):

- Vertices \mathbf{u} and \mathbf{v} are adjacent if $(\mathbf{u}, \mathbf{v}) \in \mathbf{E}$

Graph Density

A sparse graph has $\mathrm{O}(|\mathrm{V}|)$ edges

A dense graph has $\Theta\left(\mid \mathrm{V}^{2}\right)$ edges

Anything in between is either sparsish or densy depending on the context.

Weighted Graphs

Each edge has an associated weight or cost.

There may be more

Paths and Cycles

A path is a list of vertices $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathrm{n}}\right\}$ such that $\left(\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{i}+1}\right) \in \mathrm{E}$ for all $0 \leq \mathbf{i}<\mathbf{n}$
A cycle is a path that begins and ends at the same node.

Path Length and Cost

Path length: the number of edges in the path
Path cost: the sum of the costs of each edge

Topological Sort

Given a graph, $\mathbf{G}=(\mathbf{V}, \mathbf{E})$, output all the vertices in \mathbf{v} such that no vertex is output before any other vertex with an edge to it.

Topo-Sort Take One

Label each vertex's in-degree (\# of inbound edges) While there are vertices remaining

Pick a vertex with in-degree of zero and output it
Reduce the in-degree of all vertices adjacent to it
Remove it from the list of vertices
runtime:

Breadth-First Search

- No! Level-order traversal is an example of Breadth-First Search
- BFS characteristics
- Nodes being worked on maintained in a FIFO Queue, not a stack
- Iterative style procedures often easier to design than recursive procedures
Put root in a Queue
Repeat until Queue is empty:
Dequeue a node
Process it
Add it's children to queue

Graph Traversals

- Depth first search and breadth first search also work for arbitrary (directed or undirected) graphs
- Must mark visited vertices so you do not go into an infinite loop!
- Either can be used to determine connectivity:
- Is there a path between two given vertices?
- Is the graph (weakly) connected?
- Important difference: Breadth-first search always finds a shortest path from the start vertex to any other (for unweighted graphs)
- Depth first search may not!

Single Source, Shortest Path for Weighted Graphs
 Sing

$\begin{aligned} \text { Given a graph } \mathbf{G} & =(\mathbf{V}, \mathbf{E}) \text { with edge costs } \mathbf{c}(\mathrm{e}) \text {, } \\ \text { and a vertex } \mathbf{s} & \in \mathbf{V} \text { find the shortest (lowest } \cos \text {) }\end{aligned}$ and a vertex $\mathbf{s} \in \mathbf{V}$, find the shortest (lowest cost) path from s to every vertex in \mathbf{v}

- Graph may be directed or undirected
- Graph may or may not contain cycles
- Weights may be all positive or not
- What is the problem if graph contains cycles whose total cost is negative?
wose total cost

The Trouble with Negative Weighted Cycles

Edsger Wybe Dijkstra

Legendary figure in computer science; now a professor at University of Texas

Supports teaching introductory computer courses without computers (pencil and paper programming)

Also famout for refusing to read e-mail; his staff has to print out messages and put them in his mailbox.

Dijkstra's Algorithm for Single Source Shortest Path

- Classic algorithm for solving shortest path in weighted graphs (with only positive edge weights)
- Similar to breadth-first search, but uses a priority queue instead of a FIFO queue:
- Always select (expand) the vertex that has a lowest-cost path to the start vertex
- a kind of "greedy" algorithm
- Correctly handles the case where the lowest-cost (shortest) path to a vertex is not the one with fewest edges

Pseudocode for Dijkstra

Initialize the cost of each vertex to ∞
$\operatorname{cost}[\mathrm{s}]=0$;
heap.insert(s);
While (! heap.empty())
$\mathrm{n}=$ heap.deleteMin()
For (each vertex a which is adjacent to n along edge e) if ($\operatorname{cost[n]~+~edge_ cost[e]~<~cost[a])~then~}$ $\operatorname{cost}[\mathrm{a}]=\operatorname{cost}[\mathrm{n}]+$ edge_cost[e] previous_on_path_to[a] = n; if (a is in the heap) then heap.decreaseKey(a) else heap.insert(a)

Important Features

- Once a vertex is removed from the head, the cost of the shortest path to that node is known
- While a vertex is still in the heap, another shorter path to it might still be found
- The shortest path itself from s to any node a can be found by following the pointers stored in previous_on_path_to[a]

Dijkstra's Algorithm in Action

Demo

Dijkstra's

Fibonacci Heaps

- A complex version of heaps - Weiss 11.4
- Used more in theory than in practice
- Amortized O(1) time bound for decreaseKey
- $\mathrm{O}(\log \mathrm{n})$ time for deleteMin

Dijkstra's uses $|\mathrm{v}|$ deleteMins and $|\mathrm{E}|$ decreaseKeys runtime with Fibonacci heaps: $\mathrm{O}(|\mathrm{E}|+|\mathrm{V}| \log |\mathrm{V}|)$
for dense graphs, asymptotically better than $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$

